
codegen development note

March 31, 2025

1 Notations
1.1 Parenthesis
We use parenthesis to represent grouping of syntax trees. This is not restricted for expressions but for any
syntax trees. For example, we may use parenthesis as λ(x:T). t for λx:T. t. (x:T is not an expression.)

We don’t include parenthesis in syntax definition in BNF.

1.2 Repetition
• We use overline to represent repetition: xi + yi <

i=a1,...,an means xa1 + ya1 < . . . < xan + yan .

• It consists body part (xi + yi), range part (i = a1, . . . , an), and operator part (<).

• We may write the range part, i = 1 . . . n, as 1 ≤ i ≤ n: xi + yi <
1≤i≤n means x1+y1 < . . . < xn+yn.

• If the operator part (<) is just a punctuation to separate each term, we consider the punctuation
can be added at first and/or last if appropriate for the context. xi ,

i=1...n represents “x1, . . . , xn”,
“x1, . . . , xn,”, “, x1, . . . , xn”, or “, x1, . . . , xn,”.
Thus, (xi ,

i=1...m yi ,
i=1...n) can represent

(x1, . . . , xm, y1, . . . , yn) when (0 < m) ∧ (0 < n),
(x1, . . . , xm) when (0 < m) ∧ (n = 0),
(y1, . . . , yn) when (m = 0) ∧ (0 < n), and
() when m = n = 0.

• We may omit the operator part when the operator is just a punctuation to separate each term. We
write xi + yi

i=1...n for x1 + y1, . . . , xn + yn if comma is appropriate separator for the context. (Also,
comma can be added at first and/or end as described above.)

• We may write the range part as only an index metavariable if the range is clear from the context:
xi + yi

i.

• We may omit the index metavariable in the range part and the body part: x+ y
1...n means

xi + yi
i=1...n.

• We may omit the range part (i = 1 . . . n) and index of metavariables (i of xi and yi) when the
metavariables are sequences of same length. We write x+ y < for x1 + y1 < . . . < xn + yn when x
and y are n-element sequences.

• We omit both the operator and range part if appropriate. We write x+ y for x1 + y1, . . . , xn + yn
if x and y are n-element sequences and comma is appropriate separator for the context. We use
this form in most case.

• We use underline to distinguish metavariables which index is added by overline or not. We write
x+ y for x1 + y, . . . , xn + y.

1

• We use nested overline to represent multi-dimensional indexes.
match t with C x⇒ u end means
match t with C1 x1 ⇒ u1 | . . . | Cn xn ⇒ un end and
match t with C1 x11 . . . x1m1

⇒ u1 | . . . | Cn xn1 . . . xnmn
⇒ un end.

• Nested overline and underline can be combined.
let x := fix (f := t) for f in means
let x1 := fix f := t for f1 in . . . let xh := fix f := t for fh in and
let x1 := fix (f1 := t1) . . . (fn := tn) for f1 in . . . let xh := fix (f1 := t1) . . . (fn := tn) for fh in.
Overlines and underlines must construct a nested structure. If an underline and an overline
covers same range, we consider the underline covers the overline. For example, we consider abc

as a(b)c = a1bc1 . . . anbcn. We don’t consider it as a(b)c = a1(b1)c1 . . . an(bn)cn. We cannot define
how to repeat (b) because it has no variable without underline.

• This notation is based on [1].

1.3 Number of Elements
We use |x| to represent the number of elements: |x| = n if x is an n-element sequence, x1, . . . , xn.

1.4 Number of Arguments
• NAt is the number of arguments of t: NAt = m if t : T1 → · · · → Tm → T0 and T0 is not a

function type.

• NPI is the number of the parameters of the inductive type I:
NPI = p if I is defined in an inductive definition Ind [p] (ΓI := ΓC).

• NII is the number of the indexes of the inductive type I (the number of arguments without the
parameters for the inductive type):
NII = |ΓArr(I)| where ΓArr(t) is the arity of the inductive type t. It means (I : ∀(ΓP ; ΓArr(t)), S) is
defined in ΓI of Ind [p] (ΓI := ΓC) in the global environment where |ΓP | = p and S is a sort.

• NMC is the number of the members of the constructor C (the number of arguments without the
parameters for the inductive type):
NMC = |Γ| where Γ is the non-parameter arguments of the constructor C. It means (C : ∀(ΓP ; Γ), T)
is defined in ΓC of Ind [p] (ΓI := ΓC) in the global environment where |ΓP | = p and T is an inductive
type.

1.5 Substitution
t{x/u} means a term in which variable x in term t is replaced by term u. This notation is taken from the
Coq reference manual [2].

We use t{x/u} for parallel substituion.

2

2 Gallina
2.1 Gallina Syntax

t = x v-variable
| f f-variable
| c constant
| C constructor
| T type
| λx:T. t abstraction
| t u application
| let x := t : T in u let-in

| match t with C x:T ⇒ u | end conditional

| fix f/k:T := t with for fj fixpoint

Note:
• u, a, b represents a term as t.

v, w, y, z represent a v-variable as x.
g represent a f-variable as f .
U, V represents a type as T .

• We distinguish v-variables (such as x) and f-variables (such as f) in the syntax. V-variables are variables
bounded by abstraction, let-in, and conditional. F-variables are variables bounded by fixpoint. They are
treated differently in C code generation: V-variables has corresponding C variables but F-variables has no
corresponding C variables.

• We write (· · · ((t u1) u2) · · · un) as t u1 . . . un or t u.
• We write λx1:T1. (. . . (λxn:Tn. u) . . .) as λx:T . u.
• We write let x1 := t1:T1 in (. . . (let xn := tn:Tn in u) . . .) as let x := t:T in u.
• k is an integer.

ki for fixpoint specify the decreasing argument for fi.
• If it is unambiguous, we omit type annotations for the sake of simplicity. We also omit ki in fixpoints if

they are not used.
• We omitted the elimination predicate (as-in-return clause of match-expression) in the syntax.
• We omitted the dummy parameters (underscores between C and x:T) in conditionals.
• We consider inductive types and constructor types has no let-in in binders.
• We omitted the detail of the types. Actual Gallina permits any Gallina term which evaluates to a type.

2.2 Global Context and Local Context
E is a global environment which is a list of global assumptions (c:T), global definitions (c := t:T), and
inductive definitions (Ind [p] (ΓI := ΓC)).

Γ is a local context which is a list of local assumptions (x:T), (f :T) and local definitions (x := t:T).
The local assumptions (x:T) represent v-variables bounded by outer abstractions and conditionals. The
local assumptions (f :T) represent f-variables bounded by outer fixpoints. The local definitions represent
variables bounded by outer let-in.

3

2.3 Gallina Conversion Rules

beta: E[Γ] ` ((λx. t) u) . t{x/u}

delta-local: (x := t) ∈ Γ

E[Γ] ` x . t

delta-global: (c := t) ∈ E

E[Γ] ` c . t

zeta: E[Γ] ` let x := t in u . u{x/t}

iota-match: E[Γ] ` Cj a b : T |a| = NPT

E[Γ] ` match (Cj a b) with C x⇒ t end . (λxj . tj) b

iota-fix:
ukj

= C a |u| = kj

E[Γ] ` (fix f/k := t for fj) u . tj{f/fix (f/k := t) for f} u

eta expansion: E[Γ] ` t : ∀x:T. U
E[Γ] ` t . λx:T. (t x)

Note:
• The rules shown here are reductions, except the eta expansion.
• Variables cannot conflict because Coq uses de Bruijn’s indexes to represent variables.
• If it is unambiguous, we omit type annotations in these definitions for the sake of simplicity.
• Iota-match reduces match@cons nat 1 nil with (nil ⇒ t1) | (cons h t ⇒ t2) end to (λh. λt. t2) 1 nil because

list has one parameter (NPnat = 1) and cons has two members (NMcons = 2).

2.4 Equality of Terms
• t ≡ u means that t and u are same term except names of bound variables

• t
conv
= u means that t and u are convertible

• t = u means that there is a proof term of t = u (Coq.Init.Logic.eq)

• t ' u means extensional equality: ∀args, t args = u args where t args is not a function

2.5 Free Variables
FV(t) is the free variables of t.

FV(x) = {x}
FV(f) = {f}
FV(c) = ∅
FV(C) = ∅

FV(λx:T. t) = FV(t)− {x}
FV(t u) = FV(t) ∪ FV(u)

FV(let x := t : T in u) = FV(t) ∪ FV(u)− {x}

FV(match t with C x:T ⇒ u end) = FV(t) ∪
⋃

i(FV(ui)− {xi})

FV(fix f/k:T := t for fj) =
(⋃

i FV(ti)
)
− {f}

Note:
• We ommitted FV(T) here because it needs details of types. It is defined as usual.

4

2.6 Syntactic Context
We use syntactic context K. K is a single-hole context: a Gallina term with a subterm is sustituted with
a hole, []. K[u] is K with the hole is substituted with u.

We call syntactic context just as context if it is not ambiguous.

K = []

| λx:T. K
| K t

| t K
| let x := K : T in t
| let x := t : T inK

| matchK with C x:T ⇒ u end

| match t with (Cl xl:Tl ⇒ ul)
1≤l<i

(Ci xi:Ti ⇒ K)(Cl xl:Tl ⇒ ul)
i<l≤h

end

| fix (fl/kl:Tl := tl)
1≤l<i

(fi/ki:Ti := K)(fl/kl:Tl := tl)
i<l≤h

for fj

2.7 Local Context of Syntactic Context
LC(K) is the local context of the hole of K.

LC([]) = empty
LC(λx:T. K) = (x:T); LC(K)

LC(K t) = LC(K)

LC(t K) = LC(K)

LC(let x := K : T in t) = LC(K)

LC(let x := t : T inK) = (x := t:T); LC(K)

LC(matchK with C x:T ⇒ u end) = LC(K)

LC(match t with (Cl xl:Tl ⇒ ul)
1≤l<i

(Ci xi:Ti ⇒ K)(Cl xl:Tl ⇒ ul)
i<l≤h

end = (xi:Ti); LC(K)

LC(fix (fl/kl:Tl := tl)
1≤l<i

(fi/ki:Ti := K)(fl/kl:Tl := tl)
i<l≤h

for fj) = (fi:Ti); LC(K)

KV(K) is the bound variables usable in the hole of the context K.

KV(K) = {x | (∃T.(x:T) ∈ LC(K))}∪{ f | (∃T.(f :T) ∈ LC(K))}∪{x | (∃t, T.(x := t:T) ∈ LC(K))}

3 CodeGen
• Gallina-to-Gallina Transformations

– Inlining
– Strip Cast
– Eta Expansion for Functions
– V-Normalization
– S-Normalization
– Type Normalization
– Static Argument Normalization
– Unused let-in Deletion
– Call Site Replacement

5

– Eta Reduction to Expose Fixpoint
– Argument Completion
– Unreachable Fixfunc Deletion
– Monomorphism Check
– Borrow Check
– C Variable Allocation

• C Code Generation

– C Code Generation

4 Gallina-to-Gallina Transformations
We define transformations as a judgement E[Γ] ` t . u. This means a subterm t is substituted to u where
E and Γ are the global environment and the local context of them.

We also use E[Γ] `K t . u to represent transformations restricted with a syntactical context K.
E[Γ] `K t . u is similar to E[Γ] ` K[t] . K[u] but Γ is the local context of t (not K[t]).
Also, we use E[] `$ t . u which defines a tranformation of an entire term (not subterm). (The local

context is empty because an entire term has no local context.)
When we define a new constant in a transformation, We use E[Γ] ` t . (E; (c := a:T))[Γ] ` u.

4.1 Inlining
Codegen apply delta-global reductions to inline definitions.

Two command, CodeGen GlobalInline and CodeGen LocalInline, specifies what definitions will be
inlined.
CodeGen GlobalInline QUALID...
CodeGen LocalInline QUALID : QUALID...

CodeGen GlobalInline c1 . . . cn specifies global constants c1 . . . cn will be expanded.
CodeGen LocalInline c0 : c1 . . . cn specifies global constants c1 . . . cn will be expanded in c0.

4.2 Strip Cast
Codegen removes cast expressions. For example, (1 : nat) + 2 is transformed to 1 + 2.

Note that we ignore casts in this document except this section. Even the Gallina syntax in Section 2.1
has no rule for casts.

4.3 Eta Expansion for Functions
We apply eta-expansion to functions of top-level functions, fix-bounded functions, and closure generating
lambdas. We consider explicit lambdas are closure generation. This makes beta-var applicable for partial
applications without worrying to expose computation. (CIC [2] uses lambdas for match-branches but our
syntax uses no lambdas for them. Thus match-branches doesn’t trigger the eta expansion.)

etaex-top: E[] ` t : ∀x:T. U t is neither an abstraction nor fixpoint
E[] `$ t . λx:T. (t x)

etaex-fix:

E[Γ] ` ti : ∀x:T. U ti is neither an abstraction nor fixpoint

K = fix (fl := tl)
1≤l<i

(fi := [])(fl := tl)
i<l≤h

for fj
E[Γ] `K ti . λx:T. (ti x)

etaex-abs:

E[Γ] ` t : ∀x:T. U t is neither an abstraction nor fixpoint
K = λy. []

E[Γ] `K t . λx:T. (t x)

6

This transformations makes a term in following syntax. The entire term is represented as tDL. (tD for
functions and tE for non-function constants.)

tDL = tD

| tE the type of tE is an inductive type
tD = λx:T. tDL

| fix f/k:T := tD for fj
tE = x

| f
| c
| C
| T
| tE tE

| let x := tE : T in tE

| match tE with C x⇒ tE end

| tD

The type of tE in tDL is an inductive type because the eta expansions (etaex-fix and etaex-abs)
transform the body of abstraction and fixpoint until its type is not function type.

4.4 V-Normalization
4.4.1 V-Reductions

zeta-arg: E[Γ] ` u : U t is not an application u is not a v-variable y is a fresh v-variable
E[Γ] ` t x u a . let y := u : U in t x y a

zeta-item: E[Γ] ` u : U u is not a v-variable y is a fresh v-variable
E[Γ] ` match u with C x⇒ t end . let y := u : U in match y with C x⇒ t end

4.4.2 V-Normal Form

V-normal form restricts Gallina terms that (1) application arguments and (2) match items to variables.

t = x | f | c | C | T | λx:T. t | let x := t : T in u

| fix f/k:T := t for fj
| t x ← (1)

| match x with C x⇒ t end ← (2)

Since we apply V-reductions for a eta-expanded term, the result term can be represented in following
syntax.

7

tDL = tD

| tE the type of tE is an inductive type
tD = λx:T. tDL

| fix f/k:T := tD for fj
tE = x

| f
| c
| C
| T
| tE x ← (1)

| let x := tE : T in tE

| match x with C x⇒ tE end ← (2)

| tD

4.5 S-Normalization
4.5.1 S-Reductions

beta-var: E[Γ] ` (λx. t) y . t{x/y}

delta-vvar: (x := y) ∈ Γ

E[Γ] ` x . y

delta-fvar: (x := f) ∈ Γ x occur at non-argument position
E[Γ] ` x . f

delta-fun:

0 ≤ |x| 0 < |y| (z := t x) ∈ Γ

t is one of v-variable, f-variable, constant, constructor, abstraction, or fixpoint
E[Γ] ` z y . t x y

zeta-flat: E[Γ] ` let y := (let x := t1 in t2) in t0 . let x := t1 in (let y := t2 in t0)

zeta-app: E[Γ] ` (let y := t in u) x . let y := t in (u x)

iota-match-var: (v := Cj y z : T) ∈ Γ |y| = NPT

E[Γ] ` match v with C x⇒ t end . (λxj . tj) z

iota-fix-var:

(xkj := C y) ∈ Γ z are fresh v-variables

E[Γ] ` (fix f/k := t for fj) x : T T is an inductive type

E[Γ] ` (fix f/k := t for fj) x . let z := fix (f/k := t) for f in tj{f/z} x

iota-fix-var’:

(xkj
:= C y) ∈ Γ (z := fix (f/k := t) for f) ∈ Γ

E[Γ] ` (fix f/k := t for fj) x : T T is an inductive type
E[Γ] ` (fix f/k := t for fj) x . tj{f/z} x

match-app: E[Γ] ` z : T

E[Γ] ` match x as x′ in I y return T → P y x′with C x⇒ t end z

. match x as x′ in I y return P y x′with C x⇒ t z end

8

Note:
• match-app is not convertible
• delta-fvar does not forbid at a match item position but it does not break V-normalization. It is because

f-variable, which is always function type, cannot occur at match item, which must be inductive type.

4.5.2 S-Normal Form

S-reductions transform applications to restrict function positions.

• beta-var removes an abstraction at the function position of an application.

• zeta-app removes a let-in at the function position of an application.

• match-app removes a conditional at the function position of an application.

Also, types cannot be a function. We treat multi-arguments application as single application, application
is not occur at a function position. Thus, function position can be v-variable, f-variable, constant,
construcor, or fixpoint in the S-normal form.

Also, zeta-flat removes a let-in at the binder term of a let-in.

tDL = tD

| tL the type of tL is an inductive type
tD = λx:T. tDL

| fix f/k:T := tD for fj

tL = let x := tM : T in tM

tM = match x with C x⇒ tL end

| tE

tE = x | f | c | C | T
| tF x 0 < |x|
| tD

tF = x | f | c | C | fix f/k:T := tD for fj

4.6 Type Normalization
We normalize type annotations in the term.

This transformation makes that types contain no variable bounded by let-ins because such variables
are redex of delta reduction. Thus, this transformation makes Unused let-in Deletion (Section 4.8) more
effective.

9

tDL = tD

| tL the type of tL is an inductive type

tD = λx: T . tDL ←

| fix f/k: T := tD for fj ←

tL = let x := tM : T in tM ←

tM = match x with C x⇒ tL end

| tE

tE = x | f | c | C | T
| tF x 0 < |x|
| tD

tF = x | f | c | C | fix f/k: T := tD for fj ←

We also normalize types in match-expressions to make less free variables. Gallina internal representation
of match-expressions contains parameters for the inductive type, return clause, and SProp inversion data.

4.7 Static Argument Normalization
We normalize static arguments. We assume the normalized static arguments have no free variables.

It makes the syntax as follows.

tDL = tD

| tL the type of tL is an inductive type
tD = λx:T. tDL

| fix f/k:T := tD for fj

tL = let x := tM : T in tM

tM = match x with C x⇒ tL end

| tE

tE = x | f | c | C | T
| tF x 0 < |x|

| tC tA 0 < |tA|
| tD

tF = x | f | fix f/k:T := tD for fj
tC = c | C
tA = x | u u is a static argument (normal Gallina term without FV)

The application in previous section, tF x, is changed to tC tA for constant and constructor applications.
(This is not V-normal form because tA can be non-variable.)

Static arguments are defined as follows by default.

• non-monomorphic arguments for constant functions. (The non-monomorphic argument means an
argument which type is a sort or a polymorphic function type.)

• parameters for constructors.

10

The static arguments can be customized with CodeGen StaticArgs command.
This transformation makes that static arguments contain no variable bounded by let-ins because

such variables are redex of delta reduction. Thus, this transformation makes Unused let-in Deletion
(Section 4.8) more effective.

4.8 Unused let-in Deletion

zeta-del: x does not occur in u x is not linear FV(t) does not contain linear variable
E[Γ] ` let x := t in u . u

4.9 Call Site Replacement

replace:

t is a constant or constructor
a|a| is not a v-variable

a = merget(u, x)

y are fresh v-variables |x| = |y|
b = merget(u, y)

c is a fresh constant
E[Γ] `K t a z . (E; (c := λy. t b))[Γ] ` c x z

K is a non-application context to restrict t a z is not at a function position of an application.
(K = $, (λx. []), (t []), (let x := [] in u), (let x := t in []), or …but NOT ([] u).)

merget(u, x) represents a sequence of terms which two sequences of terms are merged according
to the static arguments definition of t. The first argument u specifies static arguments. The second
argument x specifies dynamic arguments. For example, assuming the 1st and 4th arguments are static for
t, merget((u1, u2), (x1, x2, x3)) = (u1, x1, x2, u2, x3).

This transformation removes non-variable arguments from applications. Thus the result will be
V-normal form again.

tDL = tD

| tL the type of tL is an inductive type
tD = λx:T. tDL

| fix f/k:T := tD for fj

tL = let x := tM : T in tM

tM = match x with C x⇒ tL end

| tE

tE = x | f | c | C | T
| tF x 0 < |x|
| tD

tF = x | f | c | C | fix f/k:T := tD for fj

4.10 Eta Reduction to Expose Fixpoint

etared-fix: E[Γ] ` t : ∀x:T . U x does not occur in t t is a fixpoint
E[Γ] ` λx:T . t x . t

Note:
• We require the types of arguments of t as T to prevent this transfomation changes the type.

11

• The premise “t is a fixpoint” guarantees the result is not partial application.

This transformation is intended to remove eta-redexes introduced by static arguments and eta
expansion (Section 4.3). For example, assume the standard list concatenation function, app : ∀A, listA→
list A→ list A, is monomorphized to bool.

app bool
.inline (λA. (fix . . .)) bool

.eta-expansion λl. λm. (λA. (fix . . .)) bool l m
.V-normalization λl. λm. let T := bool in (λA. (fix . . .)) T l m
.S-normalization λl. λm. let T := bool in (fix . . .) l m

.Type-nomalization λl. λm. let T := bool in (fix . . .) l m (expand T in the fix-term)
.zeta-del λl. λm. (fix . . .) l m

.etared-fix (fix . . .)

The code generator (Section 5) generates multiple C functions (Section 5.10) from the pre-eta-reduction
term, λl. λm. (fix . . .) l m. This eta-reduction avoid this. The code generator generates single C function
(Section 5.11) from post-eta-reduction term, (fix . . .).

4.11 Argument Completion
Argument completion removes partial applications by applying eta expansions.

argcomp-papp:

t is not an application
0 < |x|

E[Γ] ` t x : ∀y:T ,U
U is an inductive type
E[Γ] `K t x . λy:T . t x y

argcomp-fvar-cnst-cstr:

t is a f-variable, constant, or constructor
E[Γ] ` t : ∀y:T ,U

U is an inductive type
E[Γ] `K t . λy:T . t y

K is a non-application context as in Section 4.9.
This transformation makes the result of an application inductive type. Also, constants and constructors

are always fully applied to arguments. F-variables cannot occur in tE because they cannot be a inductive
type.

12

tDL = tD

| tL the type of tL is an inductive type
tD = λx:T. tDL

| fix f/k:T := tD for fj

tL = let x := tM : T in tM

tM = match x with C x⇒ tL end

| tE

tE = x | T
| c | C The type of c and C are inductive type
| tF x 0 < |x|, the type of tF x is inductive type
| tD

tF = x | f | c | C | fix f/k:T := tD for fj

4.12 Unreachable Fixfunc Deletion
Codegen deletes unreachable fix-bounded functions.

4.13 Monomorphism Check
We check the transformed term is a monomorphic term.

Although our transformations removes many rank-1 polymorphism, it still possible to retain polymor-
phic term. For example, our transformations don’t remove polymorphic recursion unless the recursion is
completely unrolled.

This step checks (1) all type annotations are inductive or function types without free variables, and
(2) types and sorts doesn’t occur at expression.

tDL = tD

| tL the type of tL is an inductive type
tD = λx:T. tDL

| fix f/k:T := tD for fj

tL = let x := tM : T in tM

tM = match x with C x⇒ tL end

| tE

tE = x ← T is removed
| c | C The type of c and C are inductive type
| tF x 0 < |x|, the type of tF x is inductive type
| tD

tF = x | f | c | C | fix f/k:T := tD for fj

4.14 Borrow Check
We define two judgements E[Γ] ` t : T | B and E[Γ] ` t : T | (L,Bused, Bresult) for borrow check. We
extend Γ in this section. Γ is an annotated local context. It is a list of (xB :T), (f :T) and (xB := t:T).
They are same as local assumption and local definitions except that the v-variable x is annotated with a
borrow information B. (The f-variable f is not-annotated.) B is a set of pair of borrow type and linear

13

variable, such as {(T, x)}. Bused and Bresult are also borrow information. L is a set of linear variables. T
is the type of t.

We write BΓ x to refer the borrow information for x in Γ. BΓ x = B if Γ contains (xB :T) or (xB := t:T).
We omit : T in a rule which does not use T .
The borrow information B = {(T, x)} represents a linear variable xi is used via borrow type Ti.

(x{(T ′,y)}:T) ∈ Γ represents x may contain a value of type T ′ which is a (part of) content of the linear
variable y.

E[Γ] ` t | B means a function t may use linear variables via borrow B.
E[Γ] ` t | (L,Bused, Bresult) means an expression t (1) consumes linear variables L, (2) may use linear

values via borrow Bused, (3) result value may contain linear values via borrow Bresult.
For example, assume linear list lseq, borrow list bseq which has constructors bnil and bcons, borrow

function borrow : lseq nat → bseq nat. In a code fragment
let y := borrow x in match y with bnil ⇒ true | bcons h t ⇒ false end contains variables x : lseq nat,
y : bseq nat, h : nat, and t : bseq nat. y and t contain a bseq nat value borrowed from x. It is
represented as y{(bseq nat,x)} : bseq nat and t{(bseq nat,x)} : bseq nat. h is annotated as h∅ which means
h does not contain borrowed values. The type of h is nat. Since nat is not a borrow type, h lives even
after x is consumed.

14

borrow-lvar: (xB :T) ∈ Γ x is linear
E[Γ] ` x | ({x}, B,B)

borrow-vvar: (xB :T) ∈ Γ x is not linear
E[Γ] ` x | (∅, B,B)

borrow-fvar: E[Γ] ` f | (∅,∅,∅)

borrow-constant: c is not a borrow function
E[Γ] ` c | (∅,∅,∅)

borrow-constructor: E[Γ] ` C | (∅,∅,∅)

borrow-letin:

E[Γ] ` t1 | (L1, B
used
1 , Bresult

1)

E[Γ; (xBresult
1 := t1:T)] ` t2 | (L2, B

used
2 , Bresult

2)

L1 ∩ L2 = ∅
x is linear→ x ∈ L2

L1 ∩Bused
2 = ∅

E[Γ] ` let x := t1 : T in t2 | (L1 ∪ L2 − {x}, Bused
1 ∪Bused

2 − {x}, Bresult
2 − {x})

borrow-match:

E[Γ] ` y | (Litem, Bused
item , Bresult

item)

Bij = Bresult
item ∩ componentsE(Tij)

Γ′ = (xB :T)

E[Γ; Γ′] ` t | (Lbranch, Bused, Bresult)

Lbranch ∩ {x} = {z | z ∈ {x} ∧ z is linear}

Lbranch’ = Lbranch − {x} ∀i,∀j,
(
Lbranch’
i = Lbranch’

j

)
Litem ∩ Lbranch’

1 = ∅

Bused
branches =

⋃
i(B

used
i − {xi}) Bresult

branches =
⋃

i(B
result
i − {xi}) Litem ∩Bused

branches = ∅

E[Γ] ` match y with C x:T ⇒ t end | (Litem ∪ Lbranch’
1 , Bused

item ∪Bused
branches, B

result
branches)

borrow-vvar-app:
(yB :T ′) ∈ Γ APP(E,Γ, B, x, T, L,Bused, Bresult)

E[Γ] ` y x : T | (L,Bused, Bresult)

borrow-fvar-app:
(f :T ′) ∈ Γ APP(E,Γ,∅, x, T, L,Bused, Bresult)

E[Γ] ` f x : T | (L,Bused, Bresult)

borrow-constant-app:
c is not a borrow function APP(E,Γ,∅, x, T, L,Bused, Bresult)

E[Γ] ` c x : T | (L,Bused, Bresult)

borrow-constructor-app: APP(E,Γ,∅, x, T, L,Bused, Bresult)

E[Γ] ` C x : T | (L,Bused, Bresult)

borrow-fix-app:
E[Γ] ` fix f := t for fj | B APP(E,Γ, B, x, T, L,Bused, Bresult)

E[Γ] ` (fix f := t for fj) x : T | (L,Bused, Bresult)

borrow-borrow:

c is a borrow function
E[Γ] ` c : T arg → T result T arg is a linear type T result is a borrow type

T result does not contain function
{T} is the set of borrow types contained in T result

B = {(T, x)}
E[Γ] ` c x | (∅, B,B)

15

borrow-fix-clo: E[Γ] ` fix f := t for fj | B
E[Γ] ` fix f := t for fj | (∅, B,B)

borrow-abs-clo: E[Γ] ` λx. t | B
E[Γ] ` λx. t | (∅, B,B)

borrow-abs-fun:

t is not an abstraction
t is not a fixpoint

E[Γ; (x∅:T)] ` t | (L,Bused, Bresult)

{z|z ∈ {x} ∧ z is linear} = L

B′ = (Bused − {x})
E[Γ] ` λx:T . t | B′

borrow-abs-fix:

t is a fixpoint

E[Γ; (x∅:T)] ` t | B
∀z ∈ {x}, z is not linear

E[Γ] ` λx:T . t | B

borrow-fix-fun:
E[Γ; (f :T)] ` t | B

E[Γ] ` fix f :T := t for fj |
⋃

iBi

APP(E,Γ, Bfunc, x, T, L,Bused, Bresult)

= 1 ≤ |x|
∧ ∀i, ∀j, (i 6= j → ¬(xi = xj ∧ xi is linear))
∧ L = {z|z ∈ {x} ∧ z is linear}
∧Bused = Bfunc ∪

⋃
i(BΓ xi)

∧Bresult = Bused ∩ componentsE(T)

∧Bused ∩ L = ∅

We use a function componentsE(T) to obtain the component types of a type T under the global
environment E. It returns a set of types or >. > is a set which contains all types. componentsE(T) is

16

defined as the minimum set which satisfy following equations.

componentsE(I t) = {I t} ∪
⋃

(x:T)∈ΓB
componentsE(T)

where E[] ` I t : S

S is a sort
Ind [p] (ΓI := ΓC) ∈ E

p the is number of recursively uniform parameters of Ind [p] (ΓI := ΓC)

I ∈ ΓI

|t| = p

(C : ∀ΓP ,∀ΓA, I u) ∈ ΓC

(I u){ΓP /t} = I t

ΓB = ΓA{ΓP /t}
componentsE(∀T,U) = >
componentsE(S) = >

where S is a sort

We extend substitution for local contexts here. t{Γ/u} represents the term t which variables in Γ are
substituted with terms u. Γ′{Γ/u} represents the local context Γ′ which variables in Γ are substituted
with terms u. If Γ contains a local definition, its variable is substituted with the corresponding definition.
(ε is the empty local context. ε is the empty list of terms.)

t{ε/ε} = t

t{((x:T); Γ)/(a u)} = t{x/a}{Γ{x/a}/u}
t{((x := a:T); Γ)/u} = t{x/a}{Γ{x/a}/u}

ε{Γ/u} = ε

((x:T); Γ′){Γ/u} = (x:T{Γ/u}); Γ′{Γ/u}
((x := a:T); Γ′){Γ/u} = (x := a{Γ/u}:T{Γ/u}); Γ′{Γ/u}

We mix borrow information and set of variables in set-operations. Assume L = {x1, . . . , xn} and
B = {(T1, y1), . . . , (Tm, ym)}.

B ∩ L = L ∩B = {(Ti, yi) ∈ B | 1 ≤ i ≤ m, yi ∈ L}
B − L = {(Ti, yi) ∈ B | 1 ≤ i ≤ m, yi /∈ L}

We also mix borrow information and set of types (including >) in set-operations.

B ∩D = D ∩B = {(Ti, yi) ∈ B | 1 ≤ i ≤ m, Ti ∈ D} D = {U1, . . . , Un}
B ∩ > = > ∩B = B

Note:
• We don’t annotate f-variables. This is not correct because invoking f1 . . . fn may refer borrowed values via

free variables in fix f :T := t for fj . However, it is harmless because corresponding linear value cannot be
consumed in the fix-term.

4.15 C Variable Allocation
We rename variables to be unique and approproate for C.

Since Gallina variables are represented by de Bruijn’s indexes, we only need to change variable names
in binders: (1) variable of abstraction, (2) functions of fixpoint, (3) variable of let-in, and (4) variables of
constructor members of conditional.

17

tDL = tD

| tL the type of tL is an inductive type
tD = λ x :T. tDL ← (1)

| fix f /k:T := tD for fj ← (2)

tL = let x := tM : T in tM ← (3)

tM = match x with C x ⇒ tL end ← (4)

| tE

tE = x

| c | C The type of c and C are inductive type
| tF x 0 < |x|, the type of tF x is inductive type
| tD

tF = x | f | c | C | fix f /k:T := tD for fj ← (2)

5 C Code Generation
5.1 The Gallina Subset for C Code Generation

tDL = tD

| tL the type of tL is an inductive type
tD = λx:T. tDL

| fix f/k:T := tD for fj

tL = let x := tM : T in tM

tM = match x with C x⇒ tL end

| tE

tE = x

| c | C The type of c and C are inductive type
| tF x 0 < |x|, the type of tF x is inductive type
| tD

tF = x | f | c | C | fix f/k:T := tD for fj

5.2 Detection of Higher Order Fixfuncs
We call the set of f-variables of higher order fixfuncs HigherOrderFixfunc.

5.3 Detection of Inlinable Fixpoints
We detect inlinable fixpoints. “Inlinable fixpoint” means a fixpoint, fixf := tforfj , which all applications
of f are located at the tail positions of f . In this case, the continuation of the applications to f in
let x := (fix f := t for fj) y in u are always let x := � in u. Thus, we can translate the tail positions
of f to (1) assignments to the arguments of fi and goto fi for application of fi and (2) assignment to x
and goto u otherwise. This translation is equivalent to inlining a tail-recursive function, which means
generating a loop at a non-tail position.

TRFUNJtK is the second component of IFIXFUNJtK. It is a set of fixfuncs which are translatable without
actual functions.

18

IFIXFUNJtK and IFIXEXPJtK are defined mutually recursive. IFIXFUNJtK is four-tuple. IFIXEXPJtK is
three-tuple. We introduce 7 functions to refer the components of them.

IFIXFUNJtK = (INLJtK,TRFUNJtK,HEADFUNJtK,TAILFUNJtK)
IFIXEXPJtK = (TREXPJtK,HEADEXPJtK,TAILEXPJtK)

The components means as follows.

INLJtK : t is inlinable or not (T or F)
TRFUNJtK,TREXPJtK : set of tail-recursive fixfuncs in t

HEADFUNJtK,HEADFUNJtK : free f-variables at head positions of t
TAILFUNJtK,TAILFUNJtK : free f-variables at tail positions of t

IFIXFUNJtK traverses abstractions and fixpoints (tD and tDL). IFIXEXPJtK traverses other constructs
(tL, tM, tE, and tF).

“tail position” is extended to the function position of the application at a tail position.
TRFUN distinguishes fixpoint bounded functions translatable without actual functions (but with goto) or
not.

IFIXFUNJλx. tK = (INLJtK,TRFUNJtK,HEADFUNJtK,TAILFUNJtK)

IFIXFUNJfix f := t for fjK =



(
T,⋃

i TRFUNJtiK ∪ {f},⋃
i HEADFUNJtiK− {f},⋃
i TAILFUNJtiK− {f}

)
(⋃

i HEADFUNJtiK ∩ {f} = ∅
)
∧(

HigherOrderFixfunc ∩ {f} = ∅
)
∧

∀i, INLJtiK(
F,⋃

i TRFUNJtiK,⋃
i(HEADFUNJtiK ∪ TAILFUNJtiK)− {f},

∅
)

otherwise

IFIXFUNJtK = (T,TREXPJtK,HEADEXPJtK,TAILEXPJtK)
if t is not abstraction nor fixpoint

IFIXEXPJx yK = (∅,∅,∅)

IFIXEXPJf yK = (∅,∅, {f})
IFIXEXPJc yK = (∅,∅,∅)

IFIXEXPJC yK = (∅,∅,∅)

IFIXEXPJlet x := t in uK = (TREXPJtK ∪ TREXPJuK,
HEADEXPJtK ∪ TAILEXPJtK ∪HEADEXPJuK,
TAILEXPJuK)

IFIXEXPJmatch y with C x⇒ t endK =
(⋃

i TREXPJtiK,
⋃

i HEADEXPJtiK,
⋃

i TAILEXPJtiK
)

IFIXEXPJtK = (TRFUNJtK,HEADEXPJtK ∪ TAILEXPJtK,∅)

if (t = λx. u) ∨ (t = fix f := u for fj)
IFIXEXPJt yK = (TRFUNJtK,HEADEXPJtK,TAILEXPJtK)

if (t = fix f := u for fj) ∧ (|y| > 0)

Note:
• The variables in t are unique. Codegen uses de Bruijn’s indexes for HEAD and TAIL; the variables renamed

by Section 4.15 for TR.
• y of match y with C x ⇒ t end is not counted because y is not a function and does not affect the final TR.
• INL guarantees that consecutive fixpoints and abstractions (tD, traversed by IFIXLF) synthesizes non-

inlinableness: an outer fixpoint is not inlinable if an inner fixpoint is not-inlinable. This property holds in
most case without INL but an curious fixpoint (such as non-recursive fixpoint) can break this property.
Thus we added INL.

19

5.4 Head Position and Tail Position

tDL
p = tDp

| tLp
tDp = λx:T. tDL

p

| fix f/k:T := tDp for fj

tLp = let x := tMHEAD : T in tMp
tMp = match x with C x⇒ tLp end

| tEp
tEp = x

| c | C
| tFp x

| tDTAIL

tFp = x | f | c | C

| fix f/k:T := tDp for fj fj ∈ TR

| fix f/k:T := tDTAIL for fj fj /∈ TR

Note:
• TR = TRFUNJtK where the translating function is defined as Definition c := t.

5.5 Top-Level Functions Detection
If a fixpoint needs recursive call in C, we need a real C function for it. Codegen detects such fixpoints by
simulating AK and BK in Section 5.7 and Section 5.8 to collect application of fixpoint-bounded functions.

5.6 Fix-lifting
We use lambda-lifting-like technique to translate fixpoint expressions without closures.

Consider following (artificial) example.
Definition c x y :=

fix f n :=
match n with
| O ⇒ x (* invocation of f needs x *)
| S n' ⇒
(fix g m :=
match m with
| O ⇒ y + f n' (* invocation of g needs y and f *)
| S m' ⇒ S (g m')
end) n

end.

Codegen translate a Gallina application to C function call (if goto is not usable). In this scenario,
Codegen generates C functions corresponding to internal functions f and g. The application in Gallina,
g m', is translated to g(m') in C. But it does not work because g needs y but the global C function g does
not know y. Also, g needs f. Although there is the C function f, f needs x. Thus, Codegen need to add
extra arguments as g(x, y, m') which is similar to lambda-lifting. We call this translation, adding extra
arguments for functions bounded by fixpoints, fix-lifting.

We define FIXFUNCS, FIXFV, EXARGS′, and EXARGS for each definition Definition c := u.
EXARGS(f) is the extra arguments for the fix-bounded function f in the definition.
FIXFUNCS is the set of f-variables in u.

20

FIXFUNCS =
⋃

K
[
fix f :=t for fj

]
=u

{f}

FIXK(f) is the context of the fixpoint which bounds f-variable f .

FIXK(f) = K where u = K[fix (gl := tl)
1≤l<i

(f := ti)(gl := tl)
i<l≤h

for gj]

FIXFV(f) is the set of free variables of the fixpoint which bounds f-variable f . FIXFV(x) is also
defined as empty set for v-variable x.

FIXFV(f) = FV(t) where u = FIXK(x)[t]

FIXFV(x) = ∅

EXARGS′(f) is a set which satisfy the following conditions. EXARGS′(f) is similar to FIXFV(f).
But if it contains a function bounded by an outer fixpoint, the free variable of the outer fixpoint are also
contained.

EXARGS′(f) ⊇ FIXFV(f) ∪
⋃

t∈FIXFV(f)

EXARGS′(t)

EXARGS′(f) ⊆ KV(FIXK(f))

EXARGS′(x) = ∅

Codegen chooses the minimal set for EXARGS′(f) if a dedicated internal C function is generated
for f . But if f is callable via c like follows, Codegen generate a call to c for f to avoid generating the
dedicated C function for f. This means f y' is translated to c(x, y'). In this case, the arguments of the
external C function for c must corresponds to the type of c. Thus Codegen chooses the maximal set (all
bound variables) for EXARGS′(f). (This means that x is passed even if f does not use x.)

Definition c := λx. fix f := λy. . . . f y' . . . for f

EXARGS(f) is defined as follows. It is EXARGS′(f) except fix-bounded functions.

EXARGS(f) = EXARGS′(f)− FIXFUNCS

When EXARGS(f) is used in a context which the order matters, we consider it is a list of variables
from declared ouside to inside. (used in Section 5.7)

When EXARGS(f) is used in a context which require types, we consider it is a set of pairs of variable
and its type. (used in Section 5.10)

21

5.7 Translation to C for a Non-Tail Position
AKJtK generates C code for t in a non-tail position. The result expression is passed to K.
K(e) = “v = e;” in simple situations.

AKJxK = K(“x”)
AKJf xK = “passign(fvars′JfK, x)

goto entry f;”
(|x| > 0) ∧ f ∈ TR

AKJf xK = K(“f(y,x)”) (|x| > 0) ∧ f /∈ TR where y = EXARGS(f)

AKJc xK = K(“c(x)”) |x| ≥ 0

AKJC xK = K(“C(x)”) |x| ≥ 0

AKJlet x := t1 in t2K = “AK′Jt1K AKJt2K” where K ′(e) = “x = e;”
AKJmatch x with C y ⇒ t endK where x : T

“switch (swfuncT (x)) {
· · ·

caselabelCi: yij = get memberCij(x);
j

linear deallocT (x);
AKJtiK
break;

· · ·
}”

AKJ(fix f := t for fj) xK = fj ∈ TR

“ passign(fvarsJtjK, x)
GENBODYAT

K′ Jfix f := t for fjK
exit fj:”

where

K ′(e) =


K(e) K(e) contains goto
“K(e)
goto exit fj;”

otherwise

AKJ(fix f := t for fj) xK = fj /∈ TR |x| > 0

“K(fj(y,x))
goto skip fj;

GENBODYANJfix f := t for fjK
skip fj:”

where
y = EXARGS(fj)

Note:
• “ · · · ” means a string. A string can contain characters in typewriter font and expressions starting in italic

or roman font. The former is preserved as-is. The latter embeds the value of the expression (with name
translation from Gallina to C).

• Gallina types, constants, and constructors have corresponding (user-configurable) C names and they are
implicitly translated. Gallina variables are translated by the mapping defined in Section 4.15.

• TR = TRFUNJtK where the translating function is defined as Definition c := t.
• swfuncT , caselabelCi , and get memberCij

are defined by a user to translate match-expressions for the
inductive type T .

• linear deallocT (x) is the deallocation function for the linear type T . It is empty for unrestricted types.
• passign(y, x) is a parallel assignment. It is translated to a sequence of assignments to assign x1 . . . xn into

y1 . . . yn. It may require temporary variables.
• We do not define AKJλx. tK because we do not support closures yet.
• Actual Codegen generates GENBODYANJK in a different position to avoid the label skip fj and gotoskip fj;.

22

5.8 Translation to C for a Tail Position
BKJtK generates C code for t in a tail position. The result expression is passed to K.
K(e) = “return e;” in simple situations.

BKJxK = K(“x”)
BKJf xK = “passign(fvars′JfK, x)

goto entry f;”
|x| > 0

BKJc xK = K(“c(x)”) |x| ≥ 0

BKJC xK = K(“C(x)”) |x| ≥ 0

BKJlet x := t1 in t2K = “AK′Jt1K BKJt2K” where K ′(e) = “x = e;”
BKJmatch x with C y ⇒ t endK = where x : T

“switch (swfuncT (x)) {
· · ·

caselabelCi
: yij = get memberCij

(x);
j

linear deallocT (x);
BKJtiK

· · ·
}”

BKJ(fix f := t for fj) xK = |x| > 0

“passign(fvarsJtjK, x)
GENBODYB

KJfix f := t for fjK”

Note:
• We do not define BKJλx. tK because a tail position cannot be a function after the argument completion.

5.9 Auxiliary Functions for Translation to C

fvarsJtK =


“x; fvarsJuK” t = λx. u

fvarsJtjK t = fix f := t for fj
“” otherwise

fvars′JfiK = fvarsJtiK for functions bounded by fix f := t for fj

GENBODYAT
K JtK =


GENBODYAT

K JuK t = λx. u

“entry fi: GENBODYAT
K JtiK” t = fix f := t for fj

for i = j, 1, . . . , (j − 1), (j + 1), . . . , |f |
AKJtK otherwise

GENBODYANJtK =



GENBODYANJuK t = λx. u

“entry fi: GENBODYANJtiK” t = fix f := t for fj
for i = 1, . . . , |f |

BKJtK otherwise
where
t : T

K(e) = “*(T*)ret = e; return;”

GENBODYB
KJtK =


GENBODYB

KJuK t = λx. u

“entry fi: GENBODYB
KJtiK” t = fix f := t for fj

for i = j, 1, . . . , (j − 1), (j + 1), . . . , |f |
BKJtK otherwise

23

Note:
• fvars and fvars′ returns a list of variables: x1; . . . ;xn;. For simplicity, we omit “;” if not ambiguous.
• “g(i)” for i = j1, . . . , jn means “g(j1) . . . g(jn)”.

5.10 Translation for a Top-Level Function which is Translated to Multiple C
Functions

GENFUNMJcK translates the function (constant) c with one or more auxiliary functions. We assume c is
defined as Definition c := t. The auxiliary functions f1 . . . fn are fixpoint bounded functions in t which
are invoked as functions. We assume the types of them:

c : T01 → · · · → T0m0
→ T00

fi : Ti1 → · · · → Timi
→ Ti0 i = 1 . . . n

where Ti0 are inductive types (i = 0 . . . n)

The formal arguments of c are x01 . . . x0m0 = fvarsJtK and the formal arguments of fi are xi1 . . . ximi =
fvars′JfiK.

fi invocation in C needs extra arguments, EXARGS(fi) = yi1:Ui1 . . . yili :Uili , addition to the actual
arguments in Gallina application because the free variables of the fixpoint should also be passed. If the
free variables contain a function bounded by an outer fixpoint, the function itself is not passed but the
free variables of the outer fixpoint are also passed. We iterate it until no fixpoint functions.

GENFUNMJcK = “enum entriesJcK arg structdefsJcK forward declJcK entry functionsJcK body functionJcK”

enum entriesJcK = “enum enum func c {func c,func fi
i=1...n

};”

arg structdefsJcK = “main structdefJcK aux structdefJcKi
i=1...n

”

main structdefJcK = “struct arg c { T0j argj;
j=1...m0 };”

aux structdefJcKi = “struct arg fi { Uij exargj;
j=1...li

Tij argj;
j=1...mi };”

forward declJcK = “static void body function c(enum enum func c g,void *arg,void *ret);”

entry functionsJcK = “main functionJcK aux functionJcKi
i=1...n

”

main functionJcK = “static T00 c(T0j x0j ,
j=1...m0) {

struct arg c arg = {x0i ,i=1...m0}; T00 ret;

body function c(func c,&arg,&ret);return ret;
}”

aux functionJcKi = “static Ti0 fi(Uij yij ,
j=1...li

Tij xij ,
j=1...mi) {

struct arg fi arg = {yij ,j=1...li xij ,j=1...mi}; Ti0 ret;

body function c(func fi,&arg,&ret); return ret;
}”

body functionJcK = “static void body function c(enum enum func c g,void *arg,void *ret) {
decls

switch (g) { aux caseJcKi
i=1...n

main caseJcK }

GENBODYB
KJtK

}”

24

aux caseJcKi = “case func fi:

yij = ((struct arg fi *)arg)->exargj;
j=1...li

xij = ((struct arg fi *)arg)->argj;
j=1...mi

goto entry fi;”

main caseJcK = “default:;

x0j = ((struct arg c *)arg)->argj;
j=1...m0”

where decls is local variable declarations for variables used in GENBODYB
KJtK.

K(e) = “*(T00*)ret = e;return;”

5.11 Translation for a Top-Level Function which is Translated to a Single C
Function

GENFUNSJcK translates the function (constant) c to a single C function.

GENFUNSJcK = “static T0 c(fargs′JtK) { decls GENBODYB
KJtK }”

where c is defined as Definition c : T1 → · · · → Tn → T0 := t.

T0 is an inductive type
decls is local variable declarations for variables used in GENBODYB

KJtK excluding fargsJtK.
K(e) = “return e;”

fargsJtK =


“T x, fargsJuK” t = λx:T. u

fargsJtjK t = fix f := t for fj
“” otherwise

fargs′JtK = fargsJtK without the trailing comma

5.12 Translation for Top-Level Function

GENFUNJcK =

{
GENFUNMJcK t needs multiple functions
GENFUNSJcK otherwise

where c is defined as Definition c := t.

6 Verification of Gallina-to-Gallina Transformations
Codegen verifies each step of the Gallina-to-Gallina transformations.

Most transformations in Codegen are convertible. Codegen checks convertibility of such transforma-
tions.

There are two non-convertible transformations:

• match-app in S-Reductions

• Unreachable Fixfunc Deletion

The verification for them is implemented in theories/verify.v.
The match-app transformation moves arguments for function-returning match expression into branches

of the match expression as follows. It transforms ((if b then t else u) n) to (if b then t n else u n).
The source definition f is transformed and the result is defined as codegen_s0_f. The equality proof
between them is defined as codegen_s0_f_proof.

25

From codegen Require Import codegen.

Definition f (b : bool) (n : nat) :=
(if b then S else Nat.add n) n.

CodeGen Gen f.

Print codegen_s0_f.
(*
codegen_s0_f = fun (v1_b : bool) (v2_n : nat) ⇒ if v1_b then S v2_n else v2_n + v2_n

: bool → nat → nat
*)

About codegen_s0_f_proof.
(* codegen_s0_f_proof : ∀ (b : bool) (n : nat), f b n = codegen_s0_f b n *)

The “Unreachable Fixfunc Deletion” drops unreachable functions in mutually-recursive fixpoints
as follows. The source definition f1 is defined as fixpoint which contains three functions: f1, f2, and
f3. f1 calls f3. f2 calls f3. f3 calls f1. CodeGen Gen f1 drops f2 because f2 is not reachable from f1.
The transformed term is defined as codegen_s0_f1 which doesn’t contain f2. The equality of f1 and
codegen_s0_f1 is proved as codegen_s0_f1_proof.
From codegen Require Import codegen.

Fixpoint f1 n := match n with 0 ⇒ 0 | S m ⇒ f3 m end
with f2 n := match n with 0 ⇒ 0 | S m ⇒ f3 m end
with f3 n := match n with 0 ⇒ 0 | S m ⇒ f1 m end.

Print f1.
(*
f1 =
fix f1 (n : nat) : nat :=

match n with
| 0 ⇒ 0
| S m ⇒ f3 m
end

with f2 (n : nat) : nat :=
match n with
| 0 ⇒ 0
| S m ⇒ f3 m
end

with f3 (n : nat) : nat :=
match n with
| 0 ⇒ 0
| S m ⇒ f1 m
end

for
f1

: nat → nat
*)

CodeGen Gen f1.

Print codegen_s0_f1.
(*
codegen_s0_f1 =
fix fixfunc1_f1 (v1_n : nat) : nat :=

match v1_n with
| 0 ⇒ 0
| S v2_m ⇒ fixfunc2_f3 v2_m
end

with fixfunc2_f3 (v3_n : nat) : nat :=

26

match v3_n with
| 0 ⇒ 0
| S v4_m ⇒ fixfunc1_f1 v4_m
end

for
fixfunc1_f1

: nat → nat
*)

About codegen_s0_f1_proof.
(* codegen_s0_f1_proof : ∀ n : nat, f1 n = codegen_s0_f1 n *)

verify-forall: E[Γ; vars] ` p : t = t′

E[Γ] ` λvars. p : ∀vars, t = t′

verify-refl: E[Γ] ` t
conv
= t′

E[Γ] ` eq refl t : t = t′

verify-applyhyp: (IH : t ' t′) ∈ Γ

E[Γ] ` IH args : t args = t′ args

verify-matchapp :
E[Γ] ` p : ∀cargs, tmargs = t′ margs ′

E[Γ] ` match x as x′ return

match x′ with C cargs ⇒ t endmargs

= match x′ with C cargs ⇒ t′ endmargs ′

with C cargs ⇒ p cargs end

: match x with C cargs ⇒ t endmargs

= match x with C cargs ⇒ t′ endmargs ′

Note: Since Codegen moves arguments for a match-expression into the branches, margs ′ is
empty in general.

27

verify-fix :

∀i ∈ {1 . . . h′}, fσ(i) = f ′
i (function name equality)

∀i ∈ {1 . . . h′}, kσ(i) = k′i (decreasing argument position equality)
∀i ∈ {1 . . . h′}, Tσ(i) ≡ T ′

i (function type equality)
∀i ∈ {1 . . . h′}, FV(tσ(i)) ∩ ({f}\{f ′}) = ∅

∀i ∈ {1 . . . h′}, E[Γ]; IHj : Fσ(j) ' F ′
j

j=1...h′

` pi : tσ(i){f/F} ' t′i{f ′/F ′}

(fix IHj/k′j : (Fσ(j) ' F ′
j) := qj

j=1...h′

for IHs′) fargs

: Fs fargs = F ′
s′ fargs

where Fi := fix f/k :T := t
j=1...h

for fi

F ′
i := fix f ′/k′ :T ′ := t′

j=1...h′

for f ′
i

σ : {1 . . . h′} → {1 . . . h} injective
s := σ(s′) (start function index)
fargs is arguments for the fixpoints (sequence of terms)
qj := λx1 . . . xnj

.

letH := pj in
match xk′

j
as y return

Fσ(j) x1 . . . xk′
j−1 y xk′

j+1 . . . xnj = F ′
j x1 . . . xk′

j−1 y xk′
j+1 . . . xnj

with

C cargs ⇒ H x1 . . . xk′
j−1 (C paramsj cargs) xk′

j+1 . . . xnj

end

nj := NAF ′
j

(number of arguments of F ′
j)

paramsj is the inductive type parameters of the decreasing argument of f ′
j

cargs is variables for the members of constructors
Note: This verify-fix rule proves the transformation of fixpoints: Fs to F ′

s′ . The transfor-
mation may drops functions in Fs unreachable from fs. The unreachable functions
are {f}\{f ′} because our transformation does not change the function names in
the fixpoints. The correspondence of functions in the fixpoints is represented with
σ. This rule builds a proof term (fix . . . for IHs′) for extensional equality of fix-
points (Fs ' F ′

s′) from extensional equality proofs of iota-fix reduced forms (pi).
The match-expression in qj makes the equality iota-fix reducible by destructing the
decreasing argument. The let-in expression to bind H prevents copy of the proof
term pj for each constructor.

28

verify-letin-generic:

x′ fresh

E[Γ] ` p : t ' t′

E[Γ; (x := t); (x′ := t′); (H : x ' x′)] ` q : u args = u′{x/x′} args ′

E[Γ] ` (let x := t in
let x′ := t′ in
λ(H : x ' x′). q) p

: (let x := t in u) args = (let x := t′ in u′) args ′

Note: We use verify-letin-generic only when t 6≡ t′. We prefer verify-letin-simple over
verify-letin-generic for smaller proof terms.

verify-letin-simple:

t ≡ t′

E[Γ; (x := t)] ` q : u args = u′ args ′

E[Γ] ` (let x := t in q)
: (let x := t in u) args = (let x := t′ in u′) args ′

verify-apparg :

t and t′ are not applications
E[Γ] ` x 6≡ x′

E[Γ] ` p : x = x′

E[Γ] ` q : t hargs x targs = t′ hargs x targs ′

rew p in q : t hargs x targs = t′ hargs x′ targs ′

where rew p in q := eq ind x (λy. t hargs x targs = t′ hargs y targs ′) q x′ p

Note: When x and x′ are function arguments for higher order functions t and t′, p is
an equality of functions. It needs functional extensionality to convert extensional
equality in Γ (see the explanation for funext-fun).

funext-ind :

t and t′ are not functions
E[Γ] ` p : t ' t′

p : t = t′

funext-fun :

t and t′ are functions
E[Γ] ` p : ∀x, t x = t′ x

p : functional extensionality t t′ p : t = t′

Note: functional extensionality is an axiom provided by Coq standard library.

The axiom, functional extensionality, is required when different functions are bounded with let-in and
they are used as an argument for an application. The verify-letin-generic rule introduces x ' x′ which is
not usable for eq ind which require x = x′. functional extensionality (and “verify-forall” rule) is used to
convert the former to the later. They are used multiple times if x and x′ are functions with multiple
arguments.

The reason Codegen uses functional extensionality is to automate the verification process. In the future,
we may introduce the ability to register a congruence lemma for each higher-order function and use it
instead of the axioms.

29

The axiom also solves a problem with an inductive type that contains a function. The equality
(Coq.Init.Logic.eq, t = t′) and extensional equality (∀args, t args = t′ args) are not suitable for such type.
Currently Codegen uses the former equality for inductive types even if they contains function. But it
requires the axiom to prove equality of a constructor application, C x = C x′ where x and x′ are functions
with extensional equality. We can define new equality type for the type but it is tedious.

References
[1] Guy L Steele Jr. It’s time for a new old language. In PPOPP, page 1, 2017. https://labs.oracle.

com/pls/apex/f?p=94065:10:175964141145:4986.

[2] The Coq Development Team. The coq reference manual: Release 8.12.0. 2020.

30

https://labs.oracle.com/pls/apex/f?p=94065:10:175964141145:4986
https://labs.oracle.com/pls/apex/f?p=94065:10:175964141145:4986

	Notations
	Parenthesis
	Repetition
	Number of Elements
	Number of Arguments
	Substitution

	Gallina
	Gallina Syntax
	Global Context and Local Context
	Gallina Conversion Rules
	Equality of Terms
	Free Variables
	Syntactic Context
	Local Context of Syntactic Context

	CodeGen
	Gallina-to-Gallina Transformations
	Inlining
	Strip Cast
	Eta Expansion for Functions
	V-Normalization
	V-Reductions
	V-Normal Form

	S-Normalization
	S-Reductions
	S-Normal Form

	Type Normalization
	Static Argument Normalization
	Unused let-in Deletion
	Call Site Replacement
	Eta Reduction to Expose Fixpoint
	Argument Completion
	Unreachable Fixfunc Deletion
	Monomorphism Check
	Borrow Check
	C Variable Allocation

	C Code Generation
	The Gallina Subset for C Code Generation
	Detection of Higher Order Fixfuncs
	Detection of Inlinable Fixpoints
	Head Position and Tail Position
	Top-Level Functions Detection
	Fix-lifting
	Translation to C for a Non-Tail Position
	Translation to C for a Tail Position
	Auxiliary Functions for Translation to C
	Translation for a Top-Level Function which is Translated to Multiple C Functions
	Translation for a Top-Level Function which is Translated to a Single C Function
	Translation for Top-Level Function

	Verification of Gallina-to-Gallina Transformations

