codegen development note March 31, 2025 ## 1 Notations #### 1.1 Parenthesis We use parenthesis to represent grouping of syntax trees. This is not restricted for expressions but for any syntax trees. For example, we may use parenthesis as $\lambda(x:T)$. t for $\lambda x:T$. t. (x:T) is not an expression.) We don't include parenthesis in syntax definition in BNF. ## 1.2 Repetition - We use overline to represent repetition: $\overline{x_i + y_i} \leq^{i=a_1,\dots,a_n}$ means $x_{a_1} + y_{a_1} < \dots < x_{a_n} + y_{a_n}$. - It consists body part $(x_i + y_i)$, range part $(i = a_1, \dots, a_n)$, and operator part (\leq) . - We may write the range part, $i = 1 \dots n$, as $1 \le i \le n$: $\overline{x_i + y_i} \le 1 \le i \le n$ means $x_1 + y_1 < \dots < x_n + y_n$. - If the operator part (\leq) is just a punctuation to separate each term, we consider the punctuation can be added at first and/or last if appropriate for the context. $\overline{x_i}_{,}^{i=1...n}$ represents " x_1,\ldots,x_n ", " x_1,\ldots,x_n ", " x_1,\ldots,x_n ", or " x_1,\ldots,x_n ". Thus, $(\overline{x_i}_{,}^{i=1...m})$ can represent $(x_1,\ldots,x_m,y_1,\ldots,y_n)$ when $(0 < m) \land (0 < n)$, (x_1,\ldots,x_m) when $(0 < m) \land (n=0)$, (y_1,\ldots,y_n) when $(m=0) \land (0 < n)$, and () when m=n=0. - We may omit the operator part when the operator is just a punctuation to separate each term. We write $\overline{x_i + y_i}^{i=1...n}$ for $x_1 + y_1, \ldots, x_n + y_n$ if comma is appropriate separator for the context. (Also, comma can be added at first and/or end as described above.) - We may write the range part as only an index metavariable if the range is clear from the context: $\overline{x_i + y_i}^i$. - We may omit the index metavariable in the range part and the body part: $\overline{x+y}^{1...n}$ means $\overline{x_i+y_i}^{i=1...n}$. - We may omit the range part (i = 1...n) and index of metavariables $(i \text{ of } x_i \text{ and } y_i)$ when the metavariables are sequences of same length. We write $\overline{x+y} \leq \text{ for } x_1+y_1 < \ldots < x_n+y_n$ when x and y are n-element sequences. - We omit both the operator and range part if appropriate. We write $\overline{x+y}$ for x_1+y_1,\ldots,x_n+y_n if x and y are n-element sequences and comma is appropriate separator for the context. We use this form in most case. - We use underline to distinguish metavariables which index is added by overline or not. We write $\overline{x+y}$ for x_1+y,\ldots,x_n+y . • We use nested overline to represent multi-dimensional indexes. ``` match t with \overline{C} \ \overline{x} \Rightarrow u end means match t with C_1 \ \overline{x_1} \Rightarrow u_1 \ | \ \dots \ | \ C_n \ \overline{x_n} \Rightarrow u_n end and match t with C_1 \ x_{11} \dots x_{1m_1} \Rightarrow u_1 \ | \ \dots \ | \ C_n \ x_{n1} \dots x_{nm_n} \Rightarrow u_n end. ``` • Nested overline and underline can be combined. ``` let x:=\operatorname{fix} (\overline{f:=t}) for f in means let x_1:=\operatorname{fix} \overline{f:=t} for f_1 in ... let x_h:=\operatorname{fix} \overline{f:=t} for f_h in and let x_1:=\operatorname{fix} (f_1:=t_1)\ldots (f_n:=t_n) for f_1 in ... let x_h:=\operatorname{fix} (f_1:=t_1)\ldots (f_n:=t_n) for f_h in. Overlines and underlines must construct a nested structure. If an underline and an overline covers same range, we consider the underline covers the overline. For example, we consider a\overline{b}c as a(\overline{b})\overline{c}=a_1\overline{b}c_1\ldots a_n\overline{b}c_n. We don't consider it as a(\overline{b})\overline{c}=a_1\overline{(b_1)}c_1\ldots a_n\overline{(b_n)}c_n. We cannot define how to repeat \overline{(b)} because it has no variable without underline. ``` • This notation is based on [1]. #### 1.3 Number of Elements We use |x| to represent the number of elements: |x| = n if x is an n-element sequence, x_1, \ldots, x_n . ## 1.4 Number of Arguments - NA_t is the number of arguments of t: NA_t = m if $t: T_1 \to \cdots \to T_m \to T_0$ and T_0 is not a function type. - NP_I is the number of the parameters of the inductive type I: NP_I = p if I is defined in an inductive definition Ind [p] $(\Gamma_I := \Gamma_C)$. - NI_I is the number of the indexes of the inductive type I (the number of arguments without the parameters for the inductive type): - $NI_I = |\Gamma_{Arr(I)}|$ where $\Gamma_{Arr(t)}$ is the arity of the inductive type t. It means $(I : \forall (\Gamma_P; \Gamma_{Arr(t)}), S)$ is defined in Γ_I of Ind[p] ($\Gamma_I := \Gamma_C$) in the global environment where $|\Gamma_P| = p$ and S is a sort. - NM_C is the number of the members of the constructor C (the number of arguments without the parameters for the inductive type): - $\operatorname{NM}_C = |\Gamma|$ where Γ is the non-parameter arguments of the constructor C. It means $(C : \forall (\Gamma_P; \Gamma), T)$ is defined in Γ_C of $\operatorname{Ind}[p](\Gamma_I := \Gamma_C)$ in the global environment where $|\Gamma_P| = p$ and T is an inductive type. #### 1.5 Substitution $t\{x/u\}$ means a term in which variable x in term t is replaced by term u. This notation is taken from the Coq reference manual [2]. We use $t\{\overline{x/u}\}$ for parallel substitution. ## 2 Gallina ## 2.1 Gallina Syntax ``` t = x v-variable | f f-variable \mid c constant \mid C constructor \mid T type \lambda x:T.t abstraction \mid t u application | let x := t : T in u let-in \mid match t with \overline{C\;\overline{x{:}T}\Rightarrow u\:|} end conditional | fix \overline{f/k:T:=t} with for f_i fixpoint ``` #### Note: - u, a, b represents a term as t. v, w, y, z represent a v-variable as x. g represent a f-variable as f. U, V represents a type as T. - We distinguish v-variables (such as x) and f-variables (such as f) in the syntax. V-variables are variables bounded by abstraction, let-in, and conditional. F-variables are variables bounded by fixpoint. They are treated differently in C code generation: V-variables has corresponding C variables but F-variables has no corresponding C variables. - We write $(\cdots ((t u_1) u_2) \cdots u_n)$ as $t u_1 \dots u_n$ or $t \overline{u}$. - We write $\lambda x_1:T_1.(\ldots(\lambda x_n:T_n.u)\ldots)$ as $\lambda \overline{x:T}.u$. - We write let $x_1 := t_1 : T_1$ in $(\dots (\text{let } x_n := t_n : T_n \text{ in } u) \dots)$ as let $\overline{x := t : T}$ in u. - k is an integer. k_i for fixpoint specify the decreasing argument for f_i. - If it is unambiguous, we omit type annotations for the sake of simplicity. We also omit k_i in fixpoints if they are not used. - We omitted the elimination predicate (as-in-return clause of match-expression) in the syntax. - We omitted the dummy parameters (underscores between C and $\overline{x:T}$) in conditionals. - We consider inductive types and constructor types has no let-in in binders. - We omitted the detail of the types. Actual Gallina permits any Gallina term which evaluates to a type. #### 2.2 Global Context and Local Context E is a global environment which is a list of global assumptions (c:T), global definitions (c:=t:T), and inductive definitions (Ind [p] ($\Gamma_I:=\Gamma_C$)). Γ is a local context which is a list of local assumptions (x:T), (f:T) and local definitions (x:=t:T). The local assumptions (x:T) represent v-variables bounded by outer abstractions and conditionals. The local assumptions (f:T) represent f-variables bounded by outer fixpoints. The local definitions represent variables bounded by outer let-in. #### 2.3 Gallina Conversion Rules $$\begin{aligned} &\text{beta: } E[\Gamma] \vdash ((\lambda x.\,t)\,u) \rhd t\{x/u\} \\ &\text{delta-local: } \frac{(x:=t) \in \Gamma}{E[\Gamma] \vdash x \rhd t} \\ &\text{delta-global: } \frac{(c:=t) \in E}{E[\Gamma] \vdash c \rhd t} \\ &\text{zeta: } E[\Gamma] \vdash \text{let } x := t \text{ in } u \rhd u\{x/t\} \\ &\text{iota-match: } \frac{E[\Gamma] \vdash C_j \, \overline{a} \, \overline{b} : T \quad |a| = \text{NP}_T}{E[\Gamma] \vdash \text{match } (C_j \, \overline{a} \, \overline{b}) \text{ with } \overline{C \, \overline{x} \Rightarrow t} \text{ end } \rhd (\lambda \overline{x_j}.\, t_j) \, \overline{b}} \\ &\text{iota-fix: } \frac{u_{k_j} = C \, \overline{a} \quad |u| = k_j}{E[\Gamma] \vdash (\text{fix } \overline{f/k := t} \text{ for } f_j) \, \overline{u} \rhd t_j \{\overline{f/\text{fix } (\overline{f/k := t})} \text{ for } f\} \, \overline{u}} \\ &\text{eta expansion: } \frac{E[\Gamma] \vdash t : \forall x : T. \, U}{E[\Gamma] \vdash t \rhd \lambda x : T. \, (t \, x)} \end{aligned}$$ Note: - The rules shown here are reductions, except the eta expansion. - Variables cannot conflict because Coq uses de Bruijn's indexes to represent variables. - If it is unambiguous, we omit type annotations in these definitions for the sake of simplicity. - Iota-match reduces match @cons nat 1 nil with (nil $\Rightarrow t_1$) | (cons ht $\Rightarrow t_2$) end to (λ h. λ t. t_2) 1 nil because list has one parameter (NP_{nat} = 1) and cons has two members (NM_{cons} = 2). #### 2.4 Equality of Terms - $t \equiv u$ means that t and u are same term except names of bound variables - $t \stackrel{\text{conv}}{=} u$ means that t and u are convertible - t = u means that there is a proof term of t = u (Coq.Init.Logic.eq) - $t \simeq u$ means extensional equality: $\forall args, t \ args = u \ args$ where $t \ args$ is not a function #### 2.5 Free Variables FV(t) is the free variables of t. $$\begin{split} \mathrm{FV}(x) &= \{x\} \\ \mathrm{FV}(f) &= \{f\} \\ \mathrm{FV}(c) &= \varnothing \\ \mathrm{FV}(C) &= \varnothing \\ \mathrm{FV}(\lambda x {:} T.\, t) &= \mathrm{FV}(t) - \{x\} \\ \mathrm{FV}(t\, u) &= \mathrm{FV}(t) \cup \mathrm{FV}(u) \\ \mathrm{FV}(\det x := t : T \ \mathrm{in} \ u) &= \mathrm{FV}(t) \cup \mathrm{FV}(u) - \{x\} \\ \mathrm{FV}(\mathrm{match} \ t \ \mathrm{with} \ \overline{C \ \overline{x {:} T}} \Rightarrow u \ \mathrm{end}) &=
\mathrm{FV}(t) \cup \bigcup_i (\mathrm{FV}(u_i) - \{\overline{x_i}\}) \\ \mathrm{FV}(\mathrm{fix} \ \overline{f/k {:} T := t} \ \mathrm{for} \ f_j) &= \left(\bigcup_i \mathrm{FV}(t_i)\right) - \{\overline{f}\} \end{split}$$ Note: • We ommitted FV(T) here because it needs details of types. It is defined as usual. #### 2.6 Syntactic Context We use syntactic context K. K is a single-hole context: a Gallina term with a subterm is sustituted with a hole, []. K[u] is K with the hole is substituted with u. We call syntactic context just as context if it is not ambiguous. $$\begin{split} K &= \begin{bmatrix} \\ \mid \lambda x : T. \ K \\ \mid K \ t \\ \mid t \ K \\ \mid let \ x := K : T \ \text{in} \ t \\ \mid let \ x := t : T \ \text{in} \ K \\ \mid \text{match} \ K \ \text{with} \ \overline{C \ \overline{x_i : T} \Rightarrow u} \ \text{end} \\ \mid \text{match} \ t \ \text{with} \ \overline{(C_l \ \overline{x_l : T_l} \Rightarrow u_l)}^{1 \le l < i} \ (C_i \ \overline{x_i : T_i} \Rightarrow K) \overline{(C_l \ \overline{x_l : T_l} \Rightarrow u_l)}^{i < l \le h} \ \text{end} \\ \mid \text{fix} \ \overline{(f_l/k_l : T_l := t_l)}^{1 \le l < i} \ (f_i/k_i : T_i := K) \overline{(f_l/k_l : T_l := t_l)}^{i < l \le h} \ \text{for} \ f_j \end{split}$$ ## 2.7 Local Context of Syntactic Context LC(K) is the local context of the hole of K. $$\begin{split} \operatorname{LC}([]) &= \operatorname{empty} \\ \operatorname{LC}(\lambda x : T. K) &= (x : T) ; \operatorname{LC}(K) \\ \operatorname{LC}(K \, t) &= \operatorname{LC}(K) \\ \operatorname{LC}(t \, K) &= \operatorname{LC}(K) \\ \operatorname{LC}(t \, K) &= \operatorname{LC}(K) \\ \operatorname{LC}(\operatorname{let} x := K : T \text{ in } t) &= \operatorname{LC}(K) \\ \operatorname{LC}(\operatorname{let} x := t : T \text{ in } K) &= (x := t : T) ; \operatorname{LC}(K) \\ \operatorname{LC}(\operatorname{match} K \text{ with } \overline{C \, \overline{x : T} \Rightarrow u} \text{ end}) &= \operatorname{LC}(K) \\ \operatorname{LC}(\operatorname{match} t \text{ with } \overline{(C_l \, \overline{x_l : T_l} \Rightarrow u_l)}^{1 \le l < i} (C_l \, \overline{x_l : T_l} \Rightarrow K) \overline{(C_l \, \overline{x_l : T_l} \Rightarrow u_l)}^{i < l \le h} \text{ end } = \overline{(x_i : T_i)} ; \operatorname{LC}(K) \\ \operatorname{LC}(\operatorname{fix} \overline{(f_l/k_l : T_l := t_l)}^{1 \le l < i} (f_i/k_l : T_l := t_l)^{i < l \le h} \text{ for } f_j) &= \overline{(f_i : T_i)} ; \operatorname{LC}(K) \end{split}$$ KV(K) is the bound variables usable in the hole of the context K. $$KV(K) = \{x \mid (\exists T.(x:T) \in LC(K))\} \cup \{f \mid (\exists T.(f:T) \in LC(K))\} \cup \{x \mid (\exists t.T.(x:=t:T) \in LC(K))\}$$ ## 3 CodeGen - Gallina-to-Gallina Transformations - Inlining - Strip Cast - Eta Expansion for Functions - V-Normalization - S-Normalization - Type Normalization - Static Argument Normalization - Unused let-in Deletion - Call Site Replacement - Eta Reduction to Expose Fixpoint - Argument Completion - Unreachable Fixfunc Deletion - Monomorphism Check - Borrow Check - C Variable Allocation - C Code Generation - C Code Generation ## 4 Gallina-to-Gallina Transformations We define transformations as a judgement $E[\Gamma] \vdash t \triangleright u$. This means a subterm t is substituted to u where E and Γ are the global environment and the local context of them. We also use $E[\Gamma] \vdash_K t \triangleright u$ to represent transformations restricted with a syntactical context K. $E[\Gamma] \vdash_K t \triangleright u$ is similar to $E[\Gamma] \vdash K[t] \triangleright K[u]$ but Γ is the local context of t (not K[t]). Also, we use $E[] \vdash_{\$} t \triangleright u$ which defines a tranformation of an entire term (not subterm). (The local context is empty because an entire term has no local context.) When we define a new constant in a transformation, We use $E[\Gamma] \vdash t \triangleright (E; (c := a : T))[\Gamma] \vdash u$. #### 4.1 Inlining Codegen apply delta-global reductions to inline definitions. Two command, CodeGen GlobalInline and CodeGen LocalInline, specifies what definitions will be inlined. ``` CodeGen GlobalInline QUALID... CodeGen LocalInline QUALID : QUALID... CodeGen GlobalInline c_1 \dots c_n specifies global constants c_1 \dots c_n will be expanded. CodeGen LocalInline c_0 : c_1 \dots c_n specifies global constants c_1 \dots c_n will be expanded in c_0. ``` #### 4.2 Strip Cast Codegen removes cast expressions. For example, (1 : nat) + 2 is transformed to 1 + 2. Note that we ignore casts in this document except this section. Even the Gallina syntax in Section 2.1 has no rule for casts. #### 4.3 Eta Expansion for Functions We apply eta-expansion to functions of top-level functions, fix-bounded functions, and closure generating lambdas. We consider explicit lambdas are closure generation. This makes beta-var applicable for partial applications without worrying to expose computation. (CIC [2] uses lambdas for match-branches but our syntax uses no lambdas for them. Thus match-branches doesn't trigger the eta expansion.) etaex-top: $$\frac{E[] \vdash t : \forall x : T. \ U \quad t \text{ is neither an abstraction nor fixpoint}}{E[] \vdash_{\$} t \rhd \lambda x : T. \ (t \ x)}$$ $$E[\Gamma] \vdash t_i : \forall x : T. \ U \quad t_i \text{ is neither an abstraction nor fixpoint}}$$ etaex-fix: $$\frac{K = \text{fix} \ \overline{(f_l := t_l)}^{1 \le l < i} (f_i := []) \overline{(f_l := t_l)}^{i < l \le h} \text{ for } f_j}{E[\Gamma] \vdash_K t_i \rhd \lambda x : T. \ (t_i \ x)}$$ $$E[\Gamma] \vdash t : \forall x : T. \ U \quad t \text{ is neither an abstraction nor fixpoint}}$$ etaex-abs: $$\frac{E[\Gamma] \vdash t : \forall x : T. \ U \quad t \text{ is neither an abstraction nor fixpoint}}{E[\Gamma] \vdash_K t \rhd \lambda x : T. \ (t \ x)}$$ This transformations makes a term in following syntax. The entire term is represented as t^{DL} . (t^{D} for functions and t^{E} for non-function constants.) $$\begin{split} t^{\mathrm{DL}} &= t^{\mathrm{D}} \\ &\mid t^{\mathrm{E}} \end{split} \qquad \text{the type of } t^{\mathrm{E}} \text{ is an inductive type} \\ t^{\mathrm{D}} &= \lambda x {:} T. \, t^{\mathrm{DL}} \\ &\mid \mathrm{fix} \, \overline{f/k {:} T := t^{\mathrm{D}}} \, \mathrm{for} \, f_{j} \end{split}$$ $$t^{\mathrm{E}} &= x \\ &\mid f \\ &\mid c \\ &\mid C \\ &\mid T \\ &\mid t^{\mathrm{E}} \, t^{\mathrm{E}} \\ &\mid \mathrm{let} \, x := t^{\mathrm{E}} : T \, \mathrm{in} \, t^{\mathrm{E}} \\ &\mid \mathrm{match} \, t^{\mathrm{E}} \, \mathrm{with} \, \overline{C \, \overline{x} \Rightarrow t^{\mathrm{E}}} \, \mathrm{end} \\ &\mid t^{\mathrm{D}} \end{split}$$ The type of $t^{\rm E}$ in $t^{\rm DL}$ is an inductive type because the eta expansions (etaex-fix and etaex-abs) transform the body of abstraction and fixpoint until its type is not function type. #### 4.4 V-Normalization #### 4.4.1 V-Reductions #### 4.4.2 V-Normal Form V-normal form restricts Gallina terms that (1) application arguments and (2) match items to variables. $$\begin{array}{lll} t = x & \mid f \mid c \mid C \mid T \mid \lambda x : T . t \mid \text{let } x := t : T \text{ in } u \\ & \mid \text{fix } \overline{f/k : T := t} \text{ for } f_j \\ & \mid t \, x & \leftarrow (1) \\ & \mid \text{match } x \text{ with } \overline{C \, \overline{x} \Rightarrow t} \text{ end} & \leftarrow (2) \end{array}$$ Since we apply V-reductions for a eta-expanded term, the result term can be represented in following syntax. $$\begin{split} t^{\mathrm{DL}} &= t^{\mathrm{D}} \\ &\mid t^{\mathrm{E}} \end{split} \qquad \text{the type of } t^{\mathrm{E}} \text{ is an inductive type} \\ t^{\mathrm{D}} &= \lambda x : T \cdot t^{\mathrm{DL}} \\ &\mid \mathrm{fix} \, \overline{f/k : T := t^{\mathrm{D}}} \, \mathrm{for} \, f_{j} \end{split}$$ $$t^{\mathrm{E}} &= x \\ &\mid f \\ &\mid c \\ &\mid C \\ &\mid T \\ &\mid t^{\mathrm{E}} \, x \\ &\mid t^{\mathrm{E}} \, x \\ &\mid \mathrm{tet} \, x := t^{\mathrm{E}} : T \, \mathrm{in} \, t^{\mathrm{E}} \\ &\mid \mathrm{match} \, x \, \mathrm{with} \, \overline{C \, \overline{x} \Rightarrow t^{\mathrm{E}}} \, \mathrm{end} \\ &\mid t^{\mathrm{D}} \end{split} \qquad \leftarrow (2)$$ ## 4.5 S-Normalization #### 4.5.1 S-Reductions beta-var: $E[\Gamma] \vdash (\lambda x. t) y \triangleright t\{x/y\}$ delta-vvar: $\frac{(x := y) \in \Gamma}{E[\Gamma] \vdash x \triangleright y}$ delta-fvar: $(x := f) \in \Gamma$ x occur at non-argument position $E[\Gamma] \vdash x \triangleright f$ $0 \le |x| \quad 0 < |y| \quad (z := t \, \overline{x}) \in \Gamma$ $E[\Gamma] \vdash z \, \overline{y} \triangleright t \, \overline{x} \, \overline{y}$ zeta-flat: $E[\Gamma] \vdash \text{let } y := (\text{let } x := t_1 \text{ in } t_2) \text{ in } t_0 \triangleright \text{let } x := t_1 \text{ in } (\text{let } y := t_2 \text{ in } t_0)$ zeta-app: $E[\Gamma] \vdash (\text{let } y := t \text{ in } u) \, \overline{x} \triangleright \text{let } y := t \text{ in } (u \, \overline{x})$ $\text{iota-match-var: } \frac{(v := C_j \; \overline{y} \; \overline{z} : T) \in \Gamma \quad |y| = \mathrm{NP}_T}{E[\Gamma] \vdash \mathtt{match} \; v \; \mathtt{with} \; \overline{C \; \overline{x} \Rightarrow t} \; \mathtt{end} \; \triangleright \; (\lambda \overline{x_j}. \; t_j) \; \overline{z}}$ $(x_{k_j} := C \overline{y}) \in \Gamma$ \overline{z} are fresh v-variables $\text{iota-fix-var: } \frac{E[\Gamma] \vdash (\operatorname{fix} \overline{f/k := t} \operatorname{for} f_j) \, \overline{x} : T \quad T \text{ is an inductive type}}{E[\Gamma] \vdash \left(\operatorname{fix} \overline{f/k := t} \operatorname{for} f_j\right) \, \overline{x} \rhd \operatorname{let} z := \operatorname{fix} \left(\overline{f/k := t}\right) \operatorname{for} f \text{ in } t_j \{\overline{f/z}\} \, \overline{x}}$ $(x_{k_i} := C \overline{y}) \in \Gamma$ $\overline{(z := \text{fix}(\overline{f/k := t}) \text{ for } f) \in \underline{\Gamma}}$ $\text{iota-fix-var': } \frac{E[\Gamma] \vdash
(\text{fix } \overline{f/k := t} \text{ for } f_j) \, \overline{x} : T \quad T \text{ is an inductive type}}{E[\Gamma] \vdash (\text{fix } \overline{f/k := t} \text{ for } f_j) \, \overline{x} \rhd t_j \{ \overline{f/z} \} \, \overline{x}}$ $\text{match-app: } \frac{E[\Gamma] \vdash z : T}{E[\Gamma] \vdash \text{match } x \text{ as } x' \text{ in } I \ \overline{y} \text{ return } T \to P \ \overline{y} \ x' \text{with } \overline{C \ \overline{x} \Rightarrow t} \text{ end } z}$ ightharpoonup match x as x' in I \overline{y} return P \overline{y} x' with \overline{C} $\overline{x} \Rightarrow t$ \underline{z} end Note: - match-app is not convertible - delta-fvar does not forbid at a match item position but it does not break V-normalization. It is because f-variable, which is always function type, cannot occur at match item, which must be inductive type. #### 4.5.2 S-Normal Form S-reductions transform applications to restrict function positions. - beta-var removes an abstraction at the function position of an application. - zeta-app removes a let-in at the function position of an application. - match-app removes a conditional at the function position of an application. Also, types cannot be a function. We treat multi-arguments application as single application, application is not occur at a function position. Thus, function position can be v-variable, f-variable, constant, construcor, or fixpoint in the S-normal form. Also, zeta-flat removes a let-in at the binder term of a let-in. $$\begin{split} t^{\mathrm{DL}} &= t^{\mathrm{D}} \\ &\mid t^{\mathrm{L}} \end{split} \qquad \text{the type of } t^{\mathrm{L}} \text{ is an inductive type} \\ t^{\mathrm{D}} &= \lambda x : T . \ t^{\mathrm{DL}} \\ &\mid \operatorname{fix} \overline{f/k : T := t^{\mathrm{D}}} \operatorname{for} f_{j} \\ &\mid t^{\mathrm{L}} = \operatorname{let} \overline{x := t^{\mathrm{M}} : T} \operatorname{in} t^{\mathrm{M}} \\ t^{\mathrm{M}} &= \operatorname{match} x \operatorname{with} \overline{C \, \overline{x} \Rightarrow t^{\mathrm{L}}} \operatorname{end} \\ &\mid t^{\mathrm{E}} \\ t^{\mathrm{E}} &= x \mid f \mid c \mid C \mid T \\ &\mid t^{\mathrm{F}} \overline{x} \\ &\mid t^{\mathrm{D}} \\ t^{\mathrm{F}} &= x \mid f \mid c \mid C \mid \operatorname{fix} \overline{f/k : T := t^{\mathrm{D}}} \operatorname{for} f_{j} \end{split}$$ ## 4.6 Type Normalization We normalize type annotations in the term. This transformation makes that types contain no variable bounded by let-ins because such variables are redex of delta reduction. Thus, this transformation makes Unused let-in Deletion (Section 4.8) more effective. $$\begin{array}{lll} t^{\mathrm{DL}} = t^{\mathrm{D}} & | \ t^{\mathrm{L}} & \text{the type of } t^{\mathrm{L}} \text{ is an inductive type} \\ t^{\mathrm{D}} = \lambda x : \boxed{T} . \ t^{\mathrm{DL}} & \leftarrow & \\ | \ \mathrm{fix} \ \overline{f/k : T} := t^{\mathrm{D}} \ \mathrm{for} \ f_{j} & \leftarrow & \\ | \ \mathrm{fix} \ \overline{x} := t^{\mathrm{M}} : \boxed{T} \ \mathrm{in} \ t^{\mathrm{M}} & \leftarrow & \\ t^{\mathrm{L}} = \mathrm{let} \ x := t^{\mathrm{M}} : \boxed{T} \ \mathrm{in} \ t^{\mathrm{M}} & \leftarrow & \\ t^{\mathrm{M}} = \mathrm{match} \ x \ \mathrm{with} \ \overline{C} \ \overline{x} \Rightarrow t^{\mathrm{L}} \ \mathrm{end} & \\ | \ t^{\mathrm{E}} = x \ | \ f \ | \ c \ | \ C \ | \ T & \\ | \ t^{\mathrm{F}} \ \overline{x} & 0 < |x| \\ | \ t^{\mathrm{D}} & \leftarrow & \\ t^{\mathrm{F}} = x \ | \ f \ | \ c \ | \ C \ | \ \mathrm{fix} \ \overline{f/k : T} := t^{\mathrm{D}} \ \mathrm{for} \ f_{j} & \leftarrow & \\ \end{array}$$ We also normalize types in match-expressions to make less free variables. Gallina internal representation of match-expressions contains parameters for the inductive type, return clause, and SProp inversion data. ## 4.7 Static Argument Normalization We normalize static arguments. We assume the normalized static arguments have no free variables. It makes the syntax as follows. $$t^{\mathrm{DL}} = t^{\mathrm{D}}$$ $$\mid t^{\mathrm{L}}$$ the type of t^{L} is an inductive type $$t^{\mathrm{D}} = \lambda x : T. \, t^{\mathrm{DL}}$$ $$\mid \operatorname{fix} \overline{f/k : T := t^{\mathrm{D}}} \operatorname{for} f_{j}$$ $$t^{\mathrm{L}} = \operatorname{let} \overline{x := t^{\mathrm{M}} : T} \operatorname{in} t^{\mathrm{M}}$$ $$t^{\mathrm{M}} = \operatorname{match} x \operatorname{with} \overline{C \, \overline{x} \Rightarrow t^{\mathrm{L}}} \operatorname{end}$$ $$\mid t^{\mathrm{E}}$$ $$t^{\mathrm{E}} = x \mid f \mid c \mid C \mid T$$ $$\mid t^{\mathrm{F}} \overline{x} \qquad 0 < |x|$$ $$\mid t^{\mathrm{C}} \overline{t^{\mathrm{A}}} \qquad 0 < |t^{\mathrm{A}}|$$ $$\mid t^{\mathrm{D}}$$ $$t^{\mathrm{F}} = x \mid f \mid \operatorname{fix} \overline{f/k : T := t^{\mathrm{D}}} \operatorname{for} f_{j}$$ $$t^{\mathrm{C}} = c \mid C$$ $$t^{\mathrm{A}} = x \mid u$$ u is a static argument (normal Gallina term without FV) The application in previous section, $t^F \overline{x}$, is changed to $t^C \overline{t^A}$ for constant and constructor applications. (This is not V-normal form because t^A can be non-variable.) Static arguments are defined as follows by default. - non-monomorphic arguments for constant functions. (The non-monomorphic argument means an argument which type is a sort or a polymorphic function type.) - parameters for constructors. The static arguments can be customized with CodeGen StaticArgs command. This transformation makes that static arguments contain no variable bounded by let-ins because such variables are redex of delta reduction. Thus, this transformation makes Unused let-in Deletion (Section 4.8) more effective. #### 4.8 Unused let-in Deletion zeta-del: $$\frac{x \text{ does not occur in } u \quad x \text{ is not linear} \quad FV(t) \text{ does not contain linear variable}}{E[\Gamma] \vdash \text{let } x := t \text{ in } u \rhd u}$$ ## 4.9 Call Site Replacement $$t \text{ is a constant or constructor}$$ $$a_{|a|} \text{ is not a v-variable}$$ $$\overline{a} = \text{merge}_t(\overline{u}, \overline{x})$$ $$\overline{y} \text{ are fresh v-variables} \quad |x| = |y|$$ $$\overline{b} = \text{merge}_t(\overline{u}, \overline{y})$$ $$c \text{ is a fresh constant}$$ $$replace: \frac{c}{E[\Gamma] \vdash_K t \ \overline{a} \ \overline{z} \rhd (E; (c := \lambda \overline{y}. t \ \overline{b}))[\Gamma] \vdash c \ \overline{x} \ \overline{z}}$$ K is a non-application context to restrict $t \overline{a} \overline{z}$ is not at a function position of an application. $(K = \$, (\lambda x. \parallel), (t \parallel), (\text{let } x := \parallel \text{in } u), (\text{let } x := t \text{ in } \parallel), \text{ or ...but NOT } (\parallel u).)$ $\operatorname{merge}_t(\overline{u}, \overline{x})$ represents a sequence of terms which two sequences of terms are merged according to the static arguments definition of t. The first argument \overline{u} specifies static arguments. The second argument \overline{x} specifies dynamic arguments. For example, assuming the 1st and 4th arguments are static for t, $\operatorname{merge}_t((u_1, u_2), (x_1, x_2, x_3)) = (u_1, x_1, x_2, u_2, x_3)$. This transformation removes non-variable arguments from applications. Thus the result will be V-normal form again. $$\begin{split} t^{\mathrm{DL}} &= t^{\mathrm{D}} \\ &\mid t^{\mathrm{L}} \end{split} \qquad \text{the type of } t^{\mathrm{L}} \text{ is an inductive type} \\ t^{\mathrm{D}} &= \lambda x : T. \, t^{\mathrm{DL}} \\ &\mid \operatorname{fix} \overline{f/k : T := t^{\mathrm{D}}} \operatorname{for} f_{j} \\ t^{\mathrm{L}} &= \operatorname{let} \overline{x := t^{\mathrm{M}} : T} \operatorname{in} t^{\mathrm{M}} \\ t^{\mathrm{M}} &= \operatorname{match} x \operatorname{with} \overline{C \, \overline{x} \Rightarrow t^{\mathrm{L}}} \operatorname{end} \\ &\mid t^{\mathrm{E}} \end{split}$$ $$t^{\mathrm{E}} &= x \mid f \mid c \mid C \mid T \\ &\mid t^{\mathrm{F}} \overline{x} \end{split} \qquad 0 < |x| \\ t^{\mathrm{P}} &= x \mid f \mid c \mid C \mid \operatorname{fix} \overline{f/k : T := t^{\mathrm{D}}} \operatorname{for} f_{j} \end{split}$$ #### 4.10 Eta Reduction to Expose Fixpoint $$\text{etared-fix: } \frac{E[\Gamma] \vdash t : \forall \overline{x}:\overline{T}. \; U \quad \overline{x} \text{ does not occur in } t \quad t \text{ is a fixpoint}}{E[\Gamma] \vdash \lambda \overline{x}:\overline{T}. \; t \; \overline{x} \rhd t}$$ Note: • We require the types of arguments of t as \overline{T} to prevent this transformation changes the type. • The premise "t is a fixpoint" guarantees the result is not partial application. This transformation is intended to remove eta-redexes introduced by static arguments and eta expansion (Section 4.3). For example, assume the standard list concatenation function, app: $\forall A$, list $A \rightarrow$ list A, is monomorphized to bool. ``` \begin{array}{c} \operatorname{app\,bool} \\ \rhd_{\operatorname{inline}} \; (\lambda \mathtt{A.} \; (\operatorname{fix} \ldots)) \; \operatorname{bool} \\ \rhd_{\operatorname{eta-expansion}} \; \lambda \mathtt{l.} \; \lambda \mathtt{m.} \; (\lambda \mathtt{A.} \; (\operatorname{fix} \ldots)) \; \operatorname{bool} \; \mathtt{l} \; \mathtt{m} \\ \rhd_{\operatorname{V-normalization}} \; \lambda \mathtt{l.} \; \lambda \mathtt{m.} \; \operatorname{let} \; \mathtt{T} := \; \operatorname{bool} \; \operatorname{in} \; (\lambda \mathtt{A.} \; (\operatorname{fix} \ldots)) \; \mathtt{T} \; \mathtt{l} \; \mathtt{m} \\ \rhd_{\operatorname{S-normalization}} \; \lambda \mathtt{l.} \; \lambda \mathtt{m.} \; \operatorname{let} \; \mathtt{T} := \; \operatorname{bool} \; \operatorname{in} \; (\operatorname{fix} \ldots) \; \mathtt{l} \; \mathtt{m} \\ \rhd_{\operatorname{Type-nomalization}} \; \lambda \mathtt{l.} \; \lambda \mathtt{m.} \; \operatorname{let} \; \mathtt{T} := \; \operatorname{bool} \; \operatorname{in} \; (\operatorname{fix} \ldots) \; \mathtt{l} \; \mathtt{m} \\ \rhd_{\operatorname{zeta-del}} \; \lambda \mathtt{l.}
\; \lambda \mathtt{m.} \; (\operatorname{fix} \ldots) \; \mathtt{l} \; \mathtt{m} \\ \rhd_{\operatorname{etared-fix}} \; (\operatorname{fix} \ldots) \end{array} ``` The code generator (Section 5) generates multiple C functions (Section 5.10) from the pre-eta-reduction term, $\lambda l. \lambda m. (fix...) lm$. This eta-reduction avoid this. The code generator generates single C function (Section 5.11) from post-eta-reduction term, (fix...). ## 4.11 Argument Completion Argument completion removes partial applications by applying eta expansions. t is not an application $$0 < |x|$$ $$E[\Gamma] \vdash t \, \overline{x} : \forall \overline{y} : \overline{T}, U$$ argcomp-papp: $$\frac{U \text{ is an inductive type}}{E[\Gamma] \vdash_K t \, \overline{x} \rhd \lambda \overline{y} : \overline{T}. \, t \, \overline{x} \, \overline{y}}$$ $$t \text{ is a f-variable, constant, or constructor}$$ $$E[\Gamma] \vdash t : \forall \overline{y} : \overline{T}, U$$ argcomp-fvar-cnst-cstr: $$\frac{U \text{ is an inductive type}}{E[\Gamma] \vdash_K t \rhd \lambda \overline{y} : \overline{T}. \, t \, \overline{y}}$$ K is a non-application context as in Section 4.9. This transformation makes the result of an application inductive type. Also, constants and constructors are always fully applied to arguments. F-variables cannot occur in $t^{\rm E}$ because they cannot be a inductive type. $$t^{\mathrm{DL}} = t^{\mathrm{D}}$$ $$\mid t^{\mathrm{L}}$$ the type of t^{L} is an inductive type $$t^{\mathrm{D}} = \lambda x : T. \, t^{\mathrm{DL}}$$ $$\mid \operatorname{fix} \overline{f/k : T := t^{\mathrm{D}}} \operatorname{for} f_{j}$$ $$t^{\mathrm{L}} = \operatorname{let} \overline{x := t^{\mathrm{M}} : T} \operatorname{in} t^{\mathrm{M}}$$ $$t^{\mathrm{M}} = \operatorname{match} x \operatorname{with} \overline{C} \, \overline{x} \Rightarrow t^{\mathrm{L}} \operatorname{end}$$ $$\mid t^{\mathrm{E}}$$ $$t^{\mathrm{E}} = x \mid T$$ $$\mid c \mid C$$ The type of c and C are inductive type $$\mid t^{\mathrm{F}} \, \overline{x}$$ $$\mid t^{\mathrm{D}} \, t^{\mathrm{F}} \, \overline{x} = t^{\mathrm{D}} \, t^{\mathrm{F}} \, \overline{x} = t^{\mathrm{D}} \, t^{\mathrm{F}} \, \overline{x} = t^{\mathrm{D}} \, t^{\mathrm{D}} \, t^{\mathrm{D}}$$ $$t^{\mathrm{F}} = x \mid f \mid c \mid C \mid \operatorname{fix} \, \overline{f/k : T := t^{\mathrm{D}}} \, \operatorname{for} \, f_{j}$$ #### 4.12 Unreachable Fixfunc Deletion Codegen deletes unreachable fix-bounded functions. ### 4.13 Monomorphism Check We check the transformed term is a monomorphic term. Although our transformations removes many rank-1 polymorphism, it still possible to retain polymorphic term. For example, our transformations don't remove polymorphic recursion unless the recursion is completely unrolled. This step checks (1) all type annotations are inductive or function types without free variables, and (2) types and sorts doesn't occur at expression. $$\begin{split} t^{\mathrm{DL}} &= t^{\mathrm{D}} \\ &\mid t^{\mathrm{L}} \end{split} \qquad \text{the type of } t^{\mathrm{L}} \text{ is an inductive type} \\ t^{\mathrm{D}} &= \lambda x : T \cdot t^{\mathrm{DL}} \\ &\mid \operatorname{fix} \overline{f/k : T := t^{\mathrm{D}}} \operatorname{for} f_{j} \\ t^{\mathrm{L}} &= \operatorname{let} \overline{x := t^{\mathrm{M}} : T} \operatorname{in} t^{\mathrm{M}} \\ t^{\mathrm{M}} &= \operatorname{match} x \operatorname{with} \overline{C} \, \overline{x} \Rightarrow t^{\mathrm{L}} \operatorname{end} \\ &\mid t^{\mathrm{E}} \end{aligned} \qquad \leftarrow T \operatorname{is removed} \\ &\mid t^{\mathrm{E}} = x \qquad \leftarrow T \operatorname{is removed} \\ &\mid t^{\mathrm{F}} \, \overline{x} \qquad \qquad \leftarrow T \operatorname{is removed} \\ &\mid t^{\mathrm{F}} \, \overline{x} \qquad \qquad 0 < |x|, \operatorname{the type of } t^{\mathrm{F}} \, \overline{x} \operatorname{is inductive type} \\ &\mid t^{\mathrm{D}} \end{aligned}$$ ### 4.14 Borrow Check We define two judgements $E[\Gamma] \vdash t : T \mid B$ and $E[\Gamma] \vdash t : T \mid (L, B^{\text{used}}, B^{\text{result}})$ for borrow check. We extend Γ in this section. Γ is an annotated local context. It is a list of $(x^B:T)$, (f:T) and $(x^B:=t:T)$. They are same as local assumption and local definitions except that the v-variable x is annotated with a borrow information B. (The f-variable f is not-annotated.) B is a set of pair of borrow type and linear variable, such as $\{\overline{(T,x)}\}$. B^{used} and B^{result} are also borrow information. L is a set of linear variables. T is the type of t. We write $B_{\Gamma} x$ to refer the borrow information for x in Γ . $B_{\Gamma} x = B$ if Γ contains $(x^B:T)$ or $(x^B:=t:T)$. We omit: T in a rule which does not use T. The borrow information $B = \{\overline{(T,x)}\}$ represents a linear variable x_i is used via borrow type T_i . $(x^{\{(T',y)\}}:T) \in \Gamma$ represents x may contain a value of type T' which is a (part of) content of the linear variable y. $E[\Gamma] \vdash t \mid B$ means a function t may use linear variables via borrow B. $E[\Gamma] \vdash t \mid (L, B^{\text{used}}, B^{\text{result}})$ means an expression t (1) consumes linear variables L, (2) may use linear values via borrow B^{used} , (3) result value may contain linear values via borrow B^{result} . For example, assume linear list lseq, borrow list bseq which has constructors bnil and bcons, borrow function borrow: lseq nat \rightarrow bseq nat. In a code fragment let y := borrow x in match y with bnil \Rightarrow true | bcons h t \Rightarrow false end contains variables x : lseq nat, y : bseq nat, h : nat, and t : bseq nat. y and t contain a bseq nat value borrowed from x. It is represented as $y^{\{(bseq nat,x)\}}$: bseq nat and $t^{\{(bseq nat,x)\}}$: bseq nat. h is annotated as h^\varnothing which means h does not contain borrowed values. The type of h is nat. Since nat is not a borrow type, h lives even after x is consumed. ``` \text{borrow-lvar: } \frac{(x^B : T) \in \Gamma \quad x \text{ is linear}}{E[\Gamma] \vdash x \mid (\{x\}, B, B)} borrow-vvar: \frac{(x^B:T) \in \Gamma \quad x \text{ is not linear}}{E[\Gamma] \vdash x \mid (\varnothing, B, B)} borrow-fvar: E[\Gamma] \vdash f \mid (\emptyset, \emptyset, \emptyset) \text{borrow-constant: } \frac{c \text{ is not a borrow function}}{E[\Gamma] \vdash c \mid (\varnothing,\varnothing,\varnothing)} borrow-constructor: E[\Gamma] \vdash C \mid (\varnothing, \varnothing, \varnothing) E[\Gamma] \vdash t_1 \mid (L_1, B_1^{\text{used}}, B_1^{\text{result}}) E[\Gamma; (x^{B_1^{\text{result}}} := t_1 : T)] \vdash t_2 \mid (L_2, B_2^{\text{used}}, B_2^{\text{result}}) L_1 \cap L_2 = \emptyset x is linear \rightarrow x \in L_2 borrow-letin: \frac{L_1 \cap B_2^{\mathrm{used}} = \varnothing}{E[\Gamma] \vdash \mathsf{let} \ x := t_1 : T \ \mathsf{in} \ t_2 \mid (L_1 \cup L_2 - \{x\}, B_1^{\mathrm{used}} \cup B_2^{\mathrm{used}} - \{x\}, B_2^{\mathrm{result}} - \{x\})} E[\Gamma] \vdash y \mid (L_{\text{item}}, B_{\text{item}}^{\text{used}}, B_{\text{item}}^{\text{result}}) B_{ij} = B_{\text{item}}^{\text{result}} \cap \text{components}_E(T_{ij}) \Gamma' = \overline{(x^B:T)} \overline{E[\Gamma;\Gamma']} \vdash t \mid (L^{\text{branch}}, B^{\text{used}}, B^{\text{result}}) \overline{L^{\text{branch}} \cap \{\overline{x}\}} = \{z \mid z \in \{\overline{x}\} \ \land \ z \text{ is linear}\} \overline{L^{\text{branch'}} = L^{\text{branch}} - \{\overline{x}\}} \quad \forall i, \forall j, \left(L^{\text{branch'}}_i = L^{\text{branch'}}_j\right) \quad L_{\text{item}} \cap L^{\text{branch'}}_1 = \varnothing \text{borrow-match: } \frac{B_{\text{branches}}^{\text{used}} = \bigcup_{i} (B_{i}^{\text{used}} - \{\overline{x_{i}}\}) \quad B_{\text{branches}}^{\text{result}} = \bigcup_{i} (B_{i}^{\text{result}} - \{\overline{x_{i}}\}) \quad L_{\text{item}} \cap B_{\text{branches}}^{\text{used}} = \varnothing}{E[\Gamma] \vdash \text{match } y \text{ with } \overline{C \ \overline{x:T}} \Rightarrow t \text{ end } | \ (L_{\text{item}} \cup L_{1}^{\text{branch'}}, B_{\text{item}}^{\text{used}} \cup B_{\text{branches}}^{\text{used}}, B_{\text{branches}}^{\text{result}})} \text{borrow-vvar-app: } \frac{(y^B : T') \in \Gamma \quad \text{APP}(E, \Gamma, B, \overline{x}, T, L, B^{\text{used}}, B^{\text{result}})}{E[\Gamma] \vdash y \: \overline{x} : T \mid (L, B^{\text{used}}, B^{\text{result}})} \text{borrow-fvar-app: } \frac{(f{:}T') \in \Gamma \quad \text{APP}(E,\Gamma,\varnothing,\overline{x},T,L,B^{\text{used}},B^{\text{result}})}{E[\Gamma] \vdash f \; \overline{x} : T \mid (L,B^{\text{used}},B^{\text{result}})} borrow-constant-app: \frac{c \text{ is not a borrow function} \quad \text{APP}(E, \Gamma, \varnothing, \overline{x}, T, L, B^{\text{used}}, B^{\text{result}})}{E[\Gamma] \vdash c \, \overline{x} : T \mid (L, B^{\text{used}}, B^{\text{result}})} \text{borrow-constructor-app: } \frac{\mathsf{APP}(E,\Gamma,\varnothing,\overline{x},T,L,B^{\mathsf{used}},B^{\mathsf{result}})}{E[\Gamma] \vdash C\,\overline{x}:T \mid (L,B^{\mathsf{used}},B^{\mathsf{result}})} \text{borrow-fix-app: } \frac{E[\Gamma] \vdash \text{fix } \overline{f := t} \text{ for } f_j \mid B \quad \text{APP}(E, \Gamma, B, \overline{x}, T, L, B^{\text{used}}, B^{\text{result}})}{E[\Gamma] \vdash (\text{fix } \overline{f := t} \text{ for } f_j) \ \overline{x} : T \mid (L, B^{\text{used}}, B^{\text{result}})} \boldsymbol{c} is a borrow function E[\Gamma] \vdash c: T^{\operatorname{arg}} \to T^{\operatorname{result}} T^{\operatorname{arg}} is a linear type T^{\operatorname{result}} is a borrow type T^{\text{result}} does not contain function \{\overline{T}\}\ is the set of borrow types contained in T^{\text{result}} B = \{ \overline{(T, \underline{x})} \} borrow-borrow: — E[\Gamma] \vdash c \ x \mid (\varnothing, B, B) ``` $$\begin{array}{l} \operatorname{borrow-fix-clo:} \ \frac{E[\Gamma] \vdash \operatorname{fix} \overline{f :=
t} \operatorname{for} f_j \mid B}{E[\Gamma] \vdash \operatorname{fix} \overline{f := t} \operatorname{for} f_j \mid (\varnothing, B, B)} \\ \operatorname{borrow-abs-clo:} \ \frac{E[\Gamma] \vdash \lambda x. \ t \mid B}{E[\Gamma] \vdash \lambda x. \ t \mid (\varnothing, B, B)} \\ t \text{ is not an abstraction} \\ t \text{ is not a fixpoint} \\ E[\Gamma; \overline{(x^\varnothing : T)}] \vdash t \mid (L, B^{\operatorname{used}}, B^{\operatorname{result}}) \\ \{z \mid z \in \{\overline{x}\} \land z \text{ is linear}\} = L \\ \operatorname{borrow-abs-fun:} \ \frac{B' = (B^{\operatorname{used}} - \{\overline{x}\})}{E[\Gamma] \vdash \lambda \overline{x} : \overline{T}. \ t \mid B'} \\ t \text{ is a fixpoint} \\ E[\Gamma; \overline{(x^\varnothing : T)}] \vdash t \mid B \\ \operatorname{borrow-abs-fix:} \ \frac{\forall z \in \{\overline{x}\}, \ z \text{ is not linear}}{E[\Gamma] \vdash \lambda \overline{x} : \overline{T}. \ t \mid B} \\ \operatorname{borrow-fix-fun:} \ \frac{\overline{E[\Gamma; \overline{(f : T)}]} \vdash t \mid B}{E[\Gamma] \vdash \operatorname{fix} \overline{f : T} : \overline{=t} \text{ for } f_j \mid \bigcup_i B_i} \\ \operatorname{APP}(E, \Gamma, B^{\operatorname{func}}, \overline{x}, T, L, B^{\operatorname{used}}, B^{\operatorname{result}}) \\ = 1 \leq |x| \\ \land \forall i, \forall j, (i \neq j \rightarrow \neg (x_i = x_j \land x_i \text{ is linear})) \\ \land L = \{z \mid z \in \{\overline{x}\} \land z \text{ is linear}\} \end{array}$$ $\wedge B^{\mathrm{used}} = B^{\mathrm{func}} \cup \bigcup_{i} (B_{\Gamma} x_{i})$ $\wedge \, B^{\mathrm{used}} \cap L = \varnothing$ $\wedge B^{\text{result}} = B^{\text{used}} \cap \text{components}_E(T)$ We use a function components_E(T) to obtain the component types of a type T under the global environment E. It returns a set of types or \top . \top is a set which contains all types. components_E(T) is defined as the minimum set which satisfy following equations. ``` \begin{aligned} \operatorname{components}_E(I\,\overline{t}) &= \{I\,\overline{t}\} \cup \bigcup_{(x:T)\in\Gamma_B} \operatorname{components}_E(T) \\ \operatorname{where} \ E[] \vdash I\,\overline{t}:S \\ S \ \operatorname{is} \ \operatorname{a} \ \operatorname{sort} \\ \operatorname{Ind} \ [p] \ (\Gamma_I := \Gamma_C) \in E \\ p \ \operatorname{the} \ \operatorname{is} \ \operatorname{number} \ \operatorname{of} \ \operatorname{recursively} \ \operatorname{uniform} \ \operatorname{parameters} \ \operatorname{of} \ \operatorname{Ind} \ [p] \ (\Gamma_I := \Gamma_C) \\ I &\in \Gamma_I \\ |t| &= p \\ (C : \forall \Gamma_P, \forall \Gamma_A, I\, \overline{u}) \in \Gamma_C \\ (I\, \overline{u}) \{\Gamma_P/\overline{t}\} &= I\, \overline{t} \\ \Gamma_B &= \Gamma_A \{\Gamma_P/\overline{t}\} \end{aligned} \operatorname{components}_E(\forall T, U) = \top \operatorname{components}_E(S) = \top \operatorname{where} \ S \ \operatorname{is} \ \operatorname{a} \ \operatorname{sort} \end{aligned} ``` We extend substitution for local contexts here. $t\{\Gamma/\overline{u}\}$ represents the term t which variables in Γ are substituted with terms \overline{u} . $\Gamma'\{\Gamma/\overline{u}\}$ represents the local context Γ' which variables in Γ are substituted with terms \overline{u} . If Γ contains a local definition, its variable is substituted with the corresponding definition. (ϵ is the empty local context. ϵ is the empty list of terms.) $$t\{\epsilon/\varepsilon\} = t$$ $$t\{((x:T); \Gamma)/(a\,\overline{u})\} = t\{x/a\}\{\Gamma\{x/a\}/\overline{u}\}$$ $$t\{((x:=a:T); \Gamma)/\overline{u}\} = t\{x/a\}\{\Gamma\{x/a\}/\overline{u}\}$$ $$\epsilon\{\Gamma/\overline{u}\} = \epsilon$$ $$((x:T); \Gamma')\{\Gamma/\overline{u}\} = (x:T\{\Gamma/\overline{u}\}); \Gamma'\{\Gamma/\overline{u}\}$$ $$((x:=a:T); \Gamma')\{\Gamma/\overline{u}\} = (x:=a\{\Gamma/\overline{u}\}:T\{\Gamma/\overline{u}\}); \Gamma'\{\Gamma/\overline{u}\}$$ We mix borrow information and set of variables in set-operations. Assume $L = \{x_1, \ldots, x_n\}$ and $B = \{(T_1, y_1), \ldots, (T_m, y_m)\}.$ $$B \cap L = L \cap B = \{ (T_i, y_i) \in B \mid 1 \le i \le m, \ y_i \in L \}$$ $$B - L = \{ (T_i, y_i) \in B \mid 1 \le i \le m, \ y_i \notin L \}$$ We also mix borrow information and set of types (including \top) in set-operations. $$B \cap D = D \cap B = \{ (T_i, y_i) \in B \mid 1 \le i \le m, \ T_i \in D \}$$ $D = \{ U_1, \dots, U_n \}$ $B \cap T = T \cap B = B$ Note: • We don't annotate f-variables. This is not correct because invoking $f_1 ldots f_n$ may refer borrowed values via free variables in fix $\overline{f:T:=t}$ for f_j . However, it is harmless because corresponding linear value cannot be consumed in the fix-term. ## 4.15 C Variable Allocation We rename variables to be unique and approproate for C. Since Gallina variables are represented by de Bruijn's indexes, we only need to change variable names in binders: (1) variable of abstraction, (2) functions of fixpoint, (3) variable of let-in, and (4) variables of constructor members of conditional. $$t^{\mathrm{DL}} = t^{\mathrm{D}}$$ $$\mid t^{\mathrm{L}} \qquad \qquad \text{the type of } t^{\mathrm{L}} \text{ is an inductive type}$$ $$t^{\mathrm{D}} = \lambda \overline{x} : T \cdot t^{\mathrm{DL}} \qquad \qquad \leftarrow (1)$$ $$\mid \operatorname{fix} \overline{f} / k : T := t^{\mathrm{D}} \operatorname{for} f_{j} \qquad \qquad \leftarrow (2)$$ $$t^{\mathrm{L}} = \operatorname{let} \overline{x} := t^{\mathrm{M}} : T \operatorname{in} t^{\mathrm{M}} \qquad \qquad \leftarrow (3)$$ $$t^{\mathrm{M}} = \operatorname{match} x \operatorname{with} \overline{C} \overline{x} \Rightarrow t^{\mathrm{L}} \operatorname{end} \qquad \qquad \leftarrow (4)$$ $$\mid t^{\mathrm{E}} = x$$ $$\mid c \mid C \qquad \qquad \qquad \operatorname{The type of } c \operatorname{and} C \operatorname{are inductive type}$$ $$\mid t^{\mathrm{F}} \overline{x} \qquad \qquad 0 < |x|, \operatorname{the type of} t^{\mathrm{F}} \overline{x} \operatorname{is inductive type}$$ $$\mid t^{\mathrm{D}} \qquad \qquad \leftarrow (2)$$ ## 5 C Code Generation #### 5.1 The Gallina Subset for C Code Generation $$\begin{split} t^{\mathrm{DL}} &= t^{\mathrm{D}} \\ &\mid t^{\mathrm{L}} \end{split} \qquad \text{the type of } t^{\mathrm{L}} \text{ is an inductive type} \\ t^{\mathrm{D}} &= \lambda x : T \cdot t^{\mathrm{DL}} \\ &\mid \mathrm{fix} \, \overline{f/k : T := t^{\mathrm{D}}} \, \mathrm{for} \, f_{j} \\ t^{\mathrm{L}} &= \mathrm{let} \, \overline{x := t^{\mathrm{M}} : T} \, \mathrm{in} \, t^{\mathrm{M}} \\ t^{\mathrm{M}} &= \mathrm{match} \, x \, \mathrm{with} \, \overline{C \, \overline{x} \Rightarrow t^{\mathrm{L}}} \, \mathrm{end} \\ &\mid t^{\mathrm{E}} \\ t^{\mathrm{E}} &= x \\ &\mid c \mid C \\ &\mid t^{\mathrm{F}} \, \overline{x} \\ &\mid t^{\mathrm{D}} \end{split} \qquad \qquad \text{The type of } c \, \mathrm{and} \, C \, \mathrm{are inductive type} \\ &\mid t^{\mathrm{D}} \\ t^{\mathrm{E}} &= x \mid t^{\mathrm{D}} \, t^{\mathrm{D}} \, \mathrm{for} \, f_{j} \end{split}$$ ## 5.2 Detection of Higher Order Fixfuncs We call the set of f-variables of higher order fixfuncs HigherOrderFixfunc. #### 5.3 Detection of Inlinable Fixpoints We detect inlinable fixpoints. "Inlinable fixpoint" means a fixpoint, $\operatorname{fix} \overline{f} := \operatorname{tfor} f_j$, which all applications of \overline{f} are located at the tail positions of \overline{f} . In this case, the continuation of the applications to \overline{f} in let $x := (\operatorname{fix} \overline{f} := \overline{t} \operatorname{for} f_j) \overline{y}$ in u are always let $x := \Box \operatorname{in} u$. Thus, we can translate the tail positions of \overline{f} to (1) assignments to the arguments of f_i and goto f_i for application of f_i and (2) assignment to f_i and goto f_i otherwise. This translation is equivalent to inlining a tail-recursive function, which means generating a loop at a non-tail position. $\text{TR}_{\text{FUN}}[\![t]\!]$ is the second component of $\text{IFIX}_{\text{FUN}}[\![t]\!]$. It is a set of fixfuncs which are translatable without actual functions. IFIX_{FUN}[[t]] and IFIX_{EXP}[[t]] are defined mutually recursive. IFIX_{FUN}[[t]] is four-tuple. IFIX_{EXP}[[t]] is three-tuple. We introduce 7 functions to refer the components of them. $$\begin{split} & \text{IFIX}_{\text{FUN}}[\![t]\!] = (\text{INL}[\![t]\!], \text{TR}_{\text{FUN}}[\![t]\!], \text{HEAD}_{\text{FUN}}[\![t]\!], \text{TAIL}_{\text{FUN}}[\![t]\!]) \\ & \text{IFIX}_{\text{EXP}}[\![t]\!] = (\text{TR}_{\text{EXP}}[\![t]\!], \text{HEAD}_{\text{EXP}}[\![t]\!], \text{TAIL}_{\text{EXP}}[\![t]\!]) \end{split}$$ The components means as follows. $$\begin{split} \text{INL}[\![t]\!] : t \text{ is inlinable or not (T or F)} \\ \text{TR}_{\text{FUN}}[\![t]\!], \text{TR}_{\text{EXP}}[\![t]\!] : \text{set of tail-recursive fixfuncs in } t \\ \text{HEAD}_{\text{FUN}}[\![t]\!], \text{HEAD}_{\text{FUN}}[\![t]\!] : \text{free f-variables at head positions of } t \\ \text{TAIL}_{\text{FUN}}[\![t]\!], \text{TAIL}_{\text{FUN}}[\![t]\!] : \text{free f-variables at tail positions of } t \end{split}$$ IFIX_{FUN}[t] traverses abstractions and fixpoints (t^D and t^{DL}). IFIX_{EXP}[t] traverses other constructs (t^L, t^M, t^E, and t^F). "tail position" is extended to the function position of the application at a tail position. TR_{FUN} distinguishes fixpoint bounded functions translatable without actual functions (but with goto) or not. $IFIX_{FUN} \llbracket \lambda x. t \rrbracket = (INL \llbracket t \rrbracket, TR_{FUN} \llbracket t \rrbracket, HEAD_{FUN} \llbracket t \rrbracket, TAIL_{FUN} \llbracket t \rrbracket)$ $$\text{IFIX}_{\text{FUN}}\llbracket \text{fix} \, \overline{f := t} \, \text{for} \, f_j \rrbracket = \begin{cases} \left(\mathsf{T}, & \left(\bigcup_i \, \text{HEAD}_{\text{FUN}} \llbracket t_i \rrbracket \, \cup \left\{ \overline{f} \right\}, & \left(\text{HigherOrderFixfunc} \, \cap \left\{
\overline{f} \right\} = \varnothing \right) \, \wedge \\ \cup_i \, \text{HEAD}_{\text{FUN}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \forall i, \, \, \text{INL} \llbracket t_i \rrbracket \, \\ \cup_i \, \text{TAIL}_{\text{FUN}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \forall i, \, \, \text{INL} \llbracket t_i \rrbracket \, \\ \cup_i \, \text{TAIL}_{\text{FUN}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise} \end{cases}$$ $$\text{otherwise}$$ $$\text{IFIX}_{\text{FUN}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{Otherwise}$$ $$\text{IFIX}_{\text{FUN}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{FUN}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{FUN}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{otherwise}$$ $$\text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, & \text{IFIX}_{\text{EXP}} \llbracket t_i \rrbracket \, - \left\{ \overline{f} \right\}, &$$ Note: - The variables in t are unique. Codegen uses de Bruijn's indexes for HEAD and TAIL; the variables renamed by Section 4.15 for TR. - y of match y with $\overline{C} \ \overline{x} \Rightarrow \overline{t}$ end is not counted because y is not a function and does not affect the final TR. - INL guarantees that consecutive fixpoints and abstractions (t^{D} , traversed by IFIX_{LF}) synthesizes non-inlinableness: an outer fixpoint is not inlinable if an inner fixpoint is not-inlinable. This property holds in most case without INL but an curious fixpoint (such as non-recursive fixpoint) can break this property. Thus we added INL. #### 5.4 Head Position and Tail Position $$\begin{split} t_p^{\mathrm{DL}} &= t_p^{\mathrm{D}} \\ &\mid t_p^{\mathrm{L}} \\ \end{split}$$ $$t_p^{\mathrm{D}} &= \lambda x {:} T {:} t_p^{\mathrm{DL}} \\ &\mid \mathrm{fix} \, \overline{f/k {:} T := t_p^{\mathrm{D}}} \, \mathrm{for} \, f_j \\ &\mid \mathrm{fix} \, \overline{f/k {:} T := t_p^{\mathrm{D}}} \, \mathrm{for} \, f_j \\ \end{split}$$ $$t_p^{\mathrm{L}} &= \mathrm{let} \, \overline{x} := t_{\mathrm{HEAD}}^{\mathrm{M}} {:} \, T \, \mathrm{in} \, t_p^{\mathrm{M}} \\ t_p^{\mathrm{M}} &= \mathrm{match} \, x \, \mathrm{with} \, \overline{C \, \overline{x}} \Rightarrow t_p^{\mathrm{L}} \, \mathrm{end} \\ &\mid t_p^{\mathrm{E}} \\ \mid t_p^{\mathrm{E}} &= x \\ &\mid c \mid C \\ &\mid t_p^{\mathrm{F}} \, \overline{x} \\ &\mid t_{\mathrm{TAIL}}^{\mathrm{D}} \\ \end{split}$$ $$t_p^{\mathrm{F}} &= x \mid f \mid c \mid C \\ &\mid \mathrm{fix} \, \overline{f/k {:} T := t_p^{\mathrm{D}}} \, \mathrm{for} \, f_j \qquad f_j \in TR \\ &\mid \mathrm{fix} \, \overline{f/k {:} T := t_{\mathrm{TAIL}}^{\mathrm{D}}} \, \mathrm{for} \, f_j \qquad f_j \notin TR \end{split}$$ Note: • $TR = TR_{FUN}[\![t]\!]$ where the translating function is defined as Definition c := t. ### 5.5 Top-Level Functions Detection If a fixpoint needs recursive call in C, we need a real C function for it. Codegen detects such fixpoints by simulating A_K and B_K in Section 5.7 and Section 5.8 to collect application of fixpoint-bounded functions. ## 5.6 Fix-lifting We use lambda-lifting-like technique to translate fixpoint expressions without closures. Consider following (artificial) example. ``` Definition c x y := fix f n := match n with \mid 0 \Rightarrow x \qquad (* invocation of f needs x *) \mid S n' \Rightarrow (fix g m := match m with \mid 0 \Rightarrow y + f n' \qquad (* invocation of g needs y and f *) \mid S m' \Rightarrow S (g m') end) n end. ``` Codegen translate a Gallina application to C function call (if goto is not usable). In this scenario, Codegen generates C functions corresponding to internal functions ${\tt f}$ and ${\tt g}$. The application in Gallina, ${\tt g}$ m', is translated to ${\tt g}({\tt m}')$ in C. But it does not work because ${\tt g}$ needs ${\tt y}$ but the global C function ${\tt g}$ does not know y. Also, ${\tt g}$ needs ${\tt f}$. Although there is the C function ${\tt f}$, ${\tt f}$ needs ${\tt x}$. Thus, Codegen need to add extra arguments as ${\tt g}({\tt x}, {\tt y}, {\tt m}')$ which is similar to lambda-lifting. We call this translation, adding extra arguments for functions bounded by fixpoints, fix-lifting. We define FIXFUNCS, FIXFV, EXARGS', and EXARGS for each definition Definition c := u. EXARGS(f) is the extra arguments for the fix-bounded function f in the definition. FIXFUNCS is the set of f-variables in u. $$\label{eq:fixfuncs} \operatorname{FIXFUNCS} = \bigcup_{K \left\lceil \operatorname{fix} \overline{f:=t} \operatorname{for} f_j \right\rceil = u} \left\{ \overline{f} \right\}$$ FIXK(f) is the context of the fixpoint which bounds f-variable f. $$\mathrm{FIXK}(f) = K \quad \text{where } u = K[\mathrm{fix}\,\overline{(g_l := t_l)}^{1 \le l < i}(f := t_l)\overline{(g_l := t_l)}^{i < l \le h}\,\mathrm{for}\,g_i]$$ FIXFV(f) is the set of free variables of the fixpoint which bounds f-variable f. FIXFV(x) is also defined as empty set for v-variable x. $$\begin{aligned} & \operatorname{FIXFV}(f) = \operatorname{FV}(t) & \text{ where } u = \operatorname{FIXK}(x)[t] \\ & \operatorname{FIXFV}(x) = \varnothing \end{aligned}$$ $\mathrm{EXARGS}'(f)$ is a set which satisfy the following conditions. $\mathrm{EXARGS}'(f)$ is similar to $\mathrm{FIXFV}(f)$. But if it contains a function bounded by an outer fixpoint, the free variable of the outer fixpoint are also contained. $$\begin{aligned} & \operatorname{EXARGS}'(f) \supseteq \operatorname{FIXFV}(f) \cup \bigcup_{t \in \operatorname{FIXFV}(f)} \operatorname{EXARGS}'(t) \\ & \operatorname{EXARGS}'(f) \subseteq \operatorname{KV}(\operatorname{FIXK}(f)) \\ & \operatorname{EXARGS}'(x) = \varnothing \end{aligned}$$ Codegen chooses the minimal set for $\operatorname{EXARGS}'(f)$ if a dedicated internal C function is generated for f. But if f is callable via c like follows, Codegen generate a call to c for f to avoid generating the dedicated C function for f. This means f g' is translated to c(x, y'). In this case, the arguments of the external C function for c must corresponds to the type of c. Thus Codegen chooses the maximal set (all bound variables) for $\operatorname{EXARGS}'(f)$. (This means that x is passed even if f does not use f.) Definition $$c := \lambda x$$. fix $f := \lambda y$ $f y'$... for f $\mathrm{EXARGS}(f)$ is defined as follows. It is $\mathrm{EXARGS}'(f)$ except fix-bounded functions. $$EXARGS(f) = EXARGS'(f) - FIXFUNCS$$ When EXARGS(f) is used in a context which the order matters, we consider it is a list of variables from declared ouside to inside. (used in Section 5.7) When $\mathrm{EXARGS}(f)$ is used in a context which require types, we consider it is a set of pairs of variable and its type. (used in Section 5.10) #### 5.7 Translation to C for a Non-Tail Position $A_K[t]$ generates C code for t in a non-tail position. The result expression is passed to K. K(e) = "v = e;" in simple situations. ``` A_K[\![x]\!] = K("x") A_K[\![f \, \overline{x}]\!] = \text{``passign}(\text{fvars'}[\![f]\!], \overline{x}) (|x| > 0) \land f \in TR goto entry f;" A_K[\![f\,\overline{x}]\!] = K("f(\overline{y},\overline{x})") (|x| > 0) \land f \notin TR where \overline{y} = \text{EXARGS}(f) A_K[\![c\,\overline{x}]\!] = K("c(\overline{x})") |x| \ge
0 A_K \llbracket C \overline{x} \rrbracket = K("C(\overline{x})") |x| \ge 0 \mathbf{A}_K \llbracket \mathtt{let} \ x := t_1 \ \mathtt{in} \ t_2 \rrbracket = \text{``} \mathbf{A}_{K'} \llbracket t_1 \rrbracket \ \mathbf{A}_K \llbracket t_2 \rrbracket \text{''} \quad \text{where} \quad K'(e) = \text{``} x = e \text{;''} A_K[[match \ x \ with \ \overline{C} \ \overline{y} \Rightarrow t \ end]] where x:T "switch (swfunc_T(x)) { caselabel_{C_i}: \overline{y_{ij} = get_member_{C_i,j}(x)}; linear_dealloc_T(x); A_K[t_i] break; }" A_K[\![(fix \overline{f} := t for f_i) \overline{x}]\!] = f_i \in TR "passign(fvars[t_i], \overline{x}) where GENBODY_{K'}^{AT} [fix \overline{f} := \overline{t} for f_i] K'(e) = \begin{cases} K(e) & K(e) \text{ contains goto} \\ \text{"}K(e) & \text{otherwise} \\ \text{goto exit}_f_j; \text{"} \end{cases} exit f_i:" A_K[\![(\operatorname{fix} \overline{f:=t} \operatorname{for} f_i) \, \overline{x}]\!] = f_j \notin TR \quad |x| > 0 "K(f_i(\overline{y},\overline{x})) where \overline{y} = \text{EXARGS}(f_i) goto skip_f_i; \operatorname{GENBODY}^{\operatorname{AN}}[\![\operatorname{fix} \overline{f:=t} \operatorname{for} f_j]\!] skip_{f_i}:" ``` Note: - "..." means a string. A string can contain characters in typewriter font and expressions starting in italic or roman font. The former is preserved as-is. The latter embeds the value of the expression (with name translation from Gallina to C). - Gallina types, constants, and constructors have corresponding (user-configurable) C names and they are implicitly translated. Gallina variables are translated by the mapping defined in Section 4.15. - $TR = TR_{FUN}[\![t]\!]$ where the translating function is defined as Definition c := t. - $swfunc_T$, $caselabel_{C_i}$, and $get_member_{C_ij}$ are defined by a user to translate match-expressions for the inductive type T. - $linear_dealloc_T(x)$ is the deallocation function for the linear type T. It is empty for unrestricted types. - passign($\overline{y}, \overline{x}$) is a parallel assignment. It is translated to a sequence of assignments to assign $x_1 \dots x_n$ into $y_1 \dots y_n$. It may require temporary variables. - We do not define $A_K[\![\lambda x.\ t]\!]$ because we do not support closures yet. - Actual Codegen generates GENBODY^{AN}[] in a different position to avoid the label $skip_f_j$ and $gotoskip_f_j$;. #### 5.8 Translation to C for a Tail Position $B_K[t]$ generates C code for t in a tail position. The result expression is passed to K. K(e) = "return e;" in simple situations. $$\begin{split} \mathbf{B}_K[\![x]\!] &= K("x") \\ \mathbf{B}_K[\![f\,\overline{x}]\!] &= \text{``passign}(\text{fvars'}[\![f]\!],\overline{x}) & |x| > 0 \\ & \text{goto entry}_f; \text{``} \\ \mathbf{B}_K[\![c\,\overline{x}]\!] &= K("c(\overline{x})") & |x| \geq 0 \\ \mathbf{B}_K[\![C\,\overline{x}]\!] &= K("C(\overline{x})") & |x| \geq 0 \\ \mathbf{B}_K[\![1 \text{et } x := t_1 \text{ in } t_2]\!] &= \text{``} \mathbf{A}_{K'}[\![t_1]\!] \ \mathbf{B}_K[\![t_2]\!]" & \text{where } K'(e) = \text{``} x = e; \text{``} \\ \mathbf{B}_K[\![1 \text{et } x \text{ with } \overline{C\,\overline{y}} \Rightarrow \overline{t} \text{ end}]\!] &= & \text{where } x : T \\ \text{``switch } (swfunc_T(x)) \; \{ \\ \dots \\ caselabel_{C_i} : & \overline{y_{ij}} = get_member_{C_{ij}}(x); \\ & | binear_dealloc_T(x); \\ & | \mathbf{B}_K[\![t_i]\!] \\ \dots \\ \mathbf{B}_K[\![t_i]\!] &= & |x| > 0 \\ \text{``passign}(\text{fvars}[\![t_j]\!], \overline{x}) \\ & \text{GENBODY}_K^B[\![\text{fix } \overline{f} := \overline{t} \text{ for } f_j]\!]" \end{split}$$ Note: • We do not define $B_K[\![\lambda x.t]\!]$ because a tail position cannot be a function after the argument completion. #### 5.9 Auxiliary Functions for Translation to C $$\begin{aligned} & \text{fvars}[\![t]\!] = \begin{cases} \text{``}x; & \text{fvars}[\![t_j]\!] & t = \lambda x. \, u \\ & \text{fvars'}[\![t_j]\!] & t = \text{fix} \, \overline{f} := t \, \text{for} \, f_j \\ & \text{otherwise} \end{cases} \\ & \text{for functions bounded by fix} \, \overline{f} := t \, \text{for} \, f_j \\ & \text{GENBODY}_K^{\text{AT}}[\![t]\!] & t = \lambda x. \, u \\ & \text{``entry}_f : & \text{GENBODY}_K^{\text{AT}}[\![t_i]\!] & t = \text{fix} \, \overline{f} := t \, \text{for} \, f_j \\ & \text{for} \, i = j, 1, \dots, (j-1), (j+1), \dots, |f| \\ & A_K[\![t]\!] & \text{otherwise} \end{aligned} \\ & \text{GENBODY}^{\text{AN}}[\![t]\!] & t = \lambda x. \, u \\ & \text{``entry}_f : & \text{GENBODY}^{\text{AN}}[\![t_i]\!] & t = \text{fix} \, \overline{f} := t \, \text{for} \, f_j \\ & \text{for} \, i = 1, \dots, |f| \end{aligned} \\ & \text{GENBODY}_K^{\text{AN}}[\![t]\!] & \text{otherwise} \\ & \text{where} \\ & t : T \\ & K(e) = ``*(T*)\text{ret} = e; \, \text{return}; `` \\ & \text{GENBODY}_K^{\text{B}}[\![t]\!] & t = \lambda x. \, u \\ & \text{``entry}_f : & \text{GENBODY}_K^{\text{B}}[\![t]\!] & t = \lambda x. \, u \\ & \text{``entry}_f : & \text{GENBODY}_K^{\text{B}}[\![t]\!] & \text{t} = \text{fix} \, \overline{f} := t \, \text{for} \, f_j \\ & \text{for} \, i = j, 1, \dots, (j-1), (j+1), \dots, |f| \\ & \text{B}_K[\![t]\!] & \text{otherwise} \end{aligned}$$ Note: - fvars and fvars' returns a list of variables: $x_1; \ldots; x_n$;. For simplicity, we omit ";" if not ambiguous. - "g(i)" for $i = j_1, ..., j_n$ means " $g(j_1) ... g(j_n)$ ". # 5.10 Translation for a Top-Level Function which is Translated to Multiple C Functions GENFUN^M[[c]] translates the function (constant) c with one or more auxiliary functions. We assume c is defined as Definition c := t. The auxiliary functions $f_1 \dots f_n$ are fixpoint bounded functions in t which are invoked as functions. We assume the types of them: ``` c: T_{01} \to \cdots \to T_{0m_0} \to T_{00} f_i: T_{i1} \to \cdots \to T_{im_i} \to T_{i0} \qquad i = 1 \dots n where T_{i0} are inductive types (i = 0 \dots n) ``` The formal arguments of c are $x_{01} ldots x_{0m_0} = \text{fvars}[t]$ and the formal arguments of f_i are $x_{i1} ldots x_{im_i} = \text{fvars}'[f_i]$. f_i invocation in C needs extra arguments, $\text{EXARGS}(f_i) = y_{i1}: U_{i1} \dots y_{il_i}: U_{il_i}$, addition to the actual arguments in Gallina application because the free variables of the fixpoint should also be passed. If the free variables contain a function bounded by an outer fixpoint, the function itself is not passed but the free variables of the outer fixpoint are also passed. We iterate it until no fixpoint functions. ``` \mathbf{GENFUN^M}[\![c]\!] = \text{``enum_entries}[\![c]\!] \text{ arg_structdefs}[\![c]\!] \text{ forward_decl}[\![c]\!] \text{ entry_functions}[\![c]\!] \text{ body_function}[\![c]\!] enum_entries[\![c]\!] = "enum enum_func_c {func_c, func_f_i}^{i=1...n}};" \operatorname{arg_structdefs}[\![c]\!] = \operatorname{``main_structdef}[\![c]\!] \, \overline{\operatorname{aux_structdef}[\![c]\!]_i}^{i=1...n}, \label{eq:main_structdef} \texttt{main_structdef}[\![c]\!] = \texttt{"struct} \, \texttt{arg_}c \, \{ \, \overline{T_{0j} \, \texttt{arg}j};^{j=1...m_0} \, \} \, ; \texttt{"} aux_structdef[\![c]\!]_i = "struct arg_f_i { \overline{U_{ij}} exargj; j=1...l_i \overline{T_{ij}} argj; j=1...m_i };" forward_decl \llbracket c \rrbracket = "static void body_function_c (enum enum_func_c g, void *arg, void *ret);" \text{entry_functions}[\![c]\!] = \text{``main_function}[\![c]\!] \ \overline{\text{aux_function}[\![c]\!]_i}^{i=1...n}, main_function\llbracket c \rrbracket = "static T_{00} c(\overline{T_{0j} x_{0j}}, \overline{T_{0j} x_{0j}}) { struct \arg_c arg = \{\overline{x_{0i}}, i=1...m_0\}; T_{00} ret; body_function_c(func_c,&arg,&ret);return ret; ጉ" aux_function[[c]]_i = "static T_{i0} f_i(\overline{U_{ij}} y_{ij} \underline{\cdot}_{2}^{j=1...l_i} \overline{T_{ij}} x_{ij} \underline{\cdot}_{2}^{j=1...m_i}) { \texttt{struct} \ \texttt{arg_} f_i \ \texttt{arg} = \{ \overline{y_{ij}}_{\underline{j}}^{j=1...l_i} \ \overline{x_{ij}}_{,\underline{j}}^{j=1...m_i} \} \text{; } T_{i0} \ \texttt{ret} \text{;} body_function_c(func_f_i,\&arg,\&ret); return ret; body_function[c] = "static void body_function_c(enum enum_func_c g, void *arg, void *ret) { switch (g) { \overline{\operatorname{aux_case}[c]_i}^{i=1...n} \operatorname{main_case}[c] } GENBODY_{K}^{\mathbf{B}}[t] ``` $$\begin{split} \text{aux_case} \llbracket c \rrbracket_i &= \text{``case func_} f_i \colon \\ & \overline{y_{ij} = ((\text{struct arg_} f_i *) \text{arg}) -> \text{exarg} j;}^{j=1...l_i} \\ & \overline{x_{ij} = ((\text{struct arg_} f_i *) \text{arg}) -> \text{arg} j;}^{j=1...m_i} \\ & \text{goto entry_} f_i; \text{''} \end{split}$$ $$\begin{aligned} & \text{main_case}[\![c]\!] = \text{``default:}; \\ & & \overline{x_{0j} = ((\text{struct} \arg c*) \arg j)} \text{->} \arg j; \end{aligned}$$ where decls is local variable declarations for variables used in GENBODY^B_K[[t]]. $K(e) = *(T_{00})$ ret = e; return;" ## 5.11 Translation for a Top-Level Function which is Translated to a Single C Function GENFUN^S $\llbracket c \rrbracket$ translates the function (constant) c to a single C function. GENFUN^S $$\llbracket c \rrbracket$$ = "static T_0 c (fargs' $\llbracket t \rrbracket$) { $decls$ GENBODY $_K^B \llbracket t \rrbracket$ }" where c is defined as Definition $c: T_1 \to \cdots \to T_n \to T_0 := t$. T_0 is an inductive type decls is local variable declarations for variables used in GENBODY $_K^B[\![t]\!]$ excluding fargs $[\![t]\!]$. $$K(e) = "return e;"$$ $$\operatorname{fargs}[\![t]\!] = \begin{cases} \text{``}T\ x\text{, fargs}[\![u]\!]\text{''} & t = \lambda x\text{:}T.\ u\\ \operatorname{fargs}[\![t_j]\!] & t = \operatorname{fix}\overline{f := t}\operatorname{for}f_j\\ \text{``'} & \operatorname{otherwise} \end{cases}$$ fargs'[t] = fargs[t] without the trailing comma ## 5.12 Translation for Top-Level Function $$\begin{aligned} \text{GENFUN}[\![c]\!] = \begin{cases} \text{GENFUN}^{\text{M}}[\![c]\!] & t \text{ needs multiple functions} \\
\text{GENFUN}^{\text{S}}[\![c]\!] & \text{otherwise} \end{cases} \end{aligned}$$ where c is defined as Definition c := t. ## 6 Verification of Gallina-to-Gallina Transformations Codegen verifies each step of the Gallina-to-Gallina transformations. Most transformations in Codegen are convertible. Codegen checks convertibility of such transformations. There are two non-convertible transformations: - match-app in S-Reductions - Unreachable Fixfunc Deletion The verification for them is implemented in theories/verify.v. The match-app transformation moves arguments for function-returning match expression into branches of the match expression as follows. It transforms ((if b then t else u) n) to (if b then t n else u n). The source definition f is transformed and the result is defined as codegen_s0_f. The equality proof between them is defined as codegen_s0_f_proof. ``` From codegen Require Import codegen. Definition f (b : bool) (n : nat) := (if b then S else Nat.add n) n. CodeGen Gen f. Print codegen_s0_f. codegen_s0_f = fun (v1_b : bool) (v2_n : nat) \Rightarrow if v1_b then S v2_n else v2_n + v2_n : bool o nat o nat About codegen_s0_f_proof. (* codegen_s0_f_proof : \forall (b : bool) (n : nat), f b n = codegen_s0_f b n *) The "Unreachable Fixfunc Deletion" drops unreachable functions in mutually-recursive fixpoints as follows. The source definition f1 is defined as fixpoint which contains three functions: f1, f2, and f3. f1 calls f3. f2 calls f3. f3 calls f1. CodeGen Gen f1 drops f2 because f2 is not reachable from f1. The transformed term is defined as codegen_s0_f1 which doesn't contain f2. The equality of f1 and codegen_s0_f1 is proved as codegen_s0_f1_proof. From codegen Require Import codegen. Fixpoint f1 n := match n with 0 \Rightarrow 0 | S m \Rightarrow f3 m end with f2 n := match n with 0 \Rightarrow 0 | S m \Rightarrow f3 m end with f3 n := match n with 0 \Rightarrow 0 \mid S m \Rightarrow f1 m \text{ end}. Print f1. f1 = fix f1 (n : nat) : nat := match n with 1.0 \Rightarrow 0 \mid S m \Rightarrow f3 m end with f2 (n : nat) : nat := match n with 1 \ 0 \Rightarrow 0 \mid S m \Rightarrow f3 m with f3 (n : nat) : nat := match n with 1 \ 0 \Rightarrow 0 | S m \Rightarrow f1 m end for f1 : \mathtt{nat} \, \to \, \mathtt{nat} CodeGen Gen f1. Print codegen_s0_f1. (* codegen_s0_f1 = fix fixfunc1_f1 (v1_n : nat) : nat := match v1_n with | 0 \Rightarrow 0 | S v2_m \Rightarrow fixfunc2_f3 v2_m with fixfunc2_f3 (v3_n : nat) : nat := ``` ``` match v3_n with \mid 0 \Rightarrow 0 \\ \mid \text{S v4_m} \Rightarrow \text{fixfunc1_f1 v4_m} \\ \text{end} \\ \text{for} \\ \text{fixfunc1_f1} \\ \text{: nat} \rightarrow \text{nat} \\ *) \\ \text{About codegen_s0_f1_proof.} \\ (* \text{codegen_s0_f1_proof} : \forall \text{ n : nat, f1 n = codegen_s0_f1 n *)} \\ \text{verify-forall:} \\ \frac{E[\Gamma; vars] \vdash p : t = t'}{E[\Gamma] \vdash \lambda vars. \ p : \forall vars, \ t = t'} \\ \end{aligned} ``` $$\text{verify-refl: } \frac{E[\Gamma] \vdash t \stackrel{\text{conv}}{=} t'}{E[\Gamma] \vdash \mathsf{eq_refl} \ t : t = t'}$$ verify-apply hyp: $$\frac{(\mathit{IH}:t\simeq t')\in\Gamma}{E[\Gamma]\vdash\mathit{IH}\;\mathit{args}:t\;\mathit{args}=t'\;\mathit{args}}$$ Note: Since Codegen moves arguments for a match-expression into the branches, margs' is empty in general. ``` \forall i \in \{1 \dots h'\}, f_{\sigma(i)} = f'_i (function name equality) \forall i \in \{1 \dots h'\}, \ k_{\sigma(i)} = k'_i (decreasing argument position equality) \forall i \in \{1 \dots h'\}, T_{\sigma(i)} \equiv T'_i (function type equality) \forall i \in \{1 \dots h'\}, \ FV(t_{\sigma(i)}) \cap (\{\overline{f}\} \setminus \{\overline{f'}\}) = \varnothing \text{verify-fix}: \frac{\forall i \in \{1 \dots h'\}, \ E[\Gamma]; \overline{IH_j: F_{\sigma(j)} \simeq F_j'^{j=1 \dots h'}} \vdash p_i: t_{\sigma(i)}\{\overline{f/F}\} \simeq t_i'\{\overline{f'/F'}\}}{(\text{fix} \ \overline{IH_j/k_j': (F_{\sigma(j)} \simeq F_j'):=q_j}^{j=1 \dots h'} \text{ for } IH_{s'}) \text{ } fargs} : F_s fargs = F'_{s'} fargs where F_i := \operatorname{fix} \overline{f/k \colon\! T := t}^{j=1\dots h} \operatorname{for} f_i F_i' := \operatorname{fix} \overline{f'/k' : T' := t'}^{j=1...h'} \operatorname{for} f_i' \sigma: \{1 \dots h'\} \to \{1 \dots h\} injective s := \sigma(s') (start function index) fargs is arguments for the fixpoints (sequence of terms) q_j := \lambda x_1 \dots x_{n_j}. let H := p_i in \operatorname{match} x_{k'_i} as y return F_{\sigma(j)} x_1 \dots x_{k'_i-1} y x_{k'_i+1} \dots x_{n_j} = F'_j x_1 \dots x_{k'_i-1} y x_{k'_i+1} \dots x_{n_j} \overline{C \ cargs \Rightarrow H \ x_1 \dots x_{k'_i-1} \ (C \ params_j \ cargs) \ x_{k'_i+1} \dots x_{n_j}} n_j := NA_{F'_i} (number of arguments of F'_i) params_i is the inductive type parameters of the decreasing argument of f'_{i} cargs is variables for the members of constructors ``` Note: This verify-fix rule proves the transformation of fixpoints: F_s to $F'_{s'}$. The transformation may drops functions in F_s unreachable from f_s . The unreachable functions are $\{\overline{f}\}\setminus\{\overline{f'}\}$ because our transformation does not change the function names in the fixpoints. The correspondence of functions in the fixpoints is represented with σ . This rule builds a proof term (fix...for $IH_{s'}$) for extensional equality of fixpoints ($F_s \simeq F'_{s'}$) from extensional equality proofs of iota-fix reduced forms (p_i). The match-expression in q_j makes the equality iota-fix reducible by destructing the decreasing argument. The let-in expression to bind H prevents copy of the proof term p_j for each constructor. $$x' \text{ fresh}$$ $$E[\Gamma] \vdash p : t \simeq t'$$ $$E[\Gamma; (x := t); (x' := t'); (H : x \simeq x')] \vdash q : u \text{ } args = u'\{x/x'\} \text{ } args'$$ $$E[\Gamma] \vdash (\text{let } x := t \text{ in}$$ $$\text{let } x' := t' \text{ in}$$ $$\lambda(H : x \simeq x'). \text{ } q) \text{ } p$$ $$: (\text{let } x := t \text{ in } u) \text{ } args = (\text{let } x := t' \text{ in } u') \text{ } args'$$ Note: We use verify-letin-generic only when $t \not\equiv t'$. We prefer verify-letin-simple over verify-letin-generic for smaller proof terms. $$t \equiv t'$$ verify-letin-simple: $$\frac{E[\Gamma;(x:=t)] \vdash q: u \; args = u' \; args'}{E[\Gamma] \vdash (\text{let} \; x:=t \; \text{in} \; q)} : (\text{let} \; x:=t \; \text{in} \; u) \; args = (\text{let} \; x:=t' \; \text{in} \; u') \; args'}$$ t and t' are not applications $E[\Gamma] \vdash x \not\equiv x'$ $E[\Gamma] \vdash p : x = x'$ $\text{verify-apparg} : \frac{E[\Gamma] \vdash q : t \text{ } hargs \text{ } x \text{ } targs = t' \text{ } hargs \text{ } x \text{ } targs'}{\text{rew } p \text{ in } q : t \text{ } hargs \text{ } x \text{ } targs = t' \text{ } hargs \text{ } x' \text{ } targs'}$ where $\text{rew } p \text{ in } q := \text{eq ind } x \text{ } (\lambda y. \text{ } t \text{ } hargs \text{ } x \text{ } targs = t' \text{ } hargs \text{ } y \text{ } targs') \text{ } q \text{ } x' \text{ } p$ Note: When x and x' are function arguments for higher order functions t and t', p is an equality of functions. It needs functional extensionality to convert extensional equality in Γ (see the explanation for funext-fun). $\text{funext-ind}: \frac{t \text{ and } t' \text{ are not functions}}{E[\Gamma] \vdash p: t \simeq t'}$ $\text{funext-fun}: \frac{t \text{ and } t' \text{ are functions}}{p: \text{funext-sional_extensionality } t \ t' \ p: t=t'}$ Note: $functional_extensionality$ is an axiom provided by Coq standard library. The axiom, functional_extensionality, is required when different functions are bounded with let-in and they are used as an argument for an application. The verify-letin-generic rule introduces $x \simeq x'$ which is not usable for eq_ind which require x = x'. functional_extensionality (and "verify-forall" rule) is used to convert the former to the later. They are used multiple times if x and x' are functions with multiple arguments. The reason Codegen uses functional_extensionality is to automate the verification process. In the future, we may introduce the ability to register a congruence lemma for each higher-order function and use it instead of the axioms. The axiom also solves a problem with an inductive type that contains a function. The equality (Coq.Init.Logic.eq, t=t') and extensional equality ($\forall args, t\ args=t'\ args$) are not suitable for such type. Currently Codegen uses the former equality for inductive types even if they contains function. But it requires the axiom to prove equality of a constructor application, Cx=Cx' where x and x' are functions with extensional equality. We can define new equality type for the type but it is tedious. #### References - [1] Guy L Steele Jr. It's time for a new old language. In *PPOPP*, page 1, 2017. https://labs.oracle.com/pls/apex/f?p=94065:10:175964141145:4986. - [2] The Coq Development Team. The coq reference manual: Release 8.12.0. 2020.